Modules description Master degree course Systems-Engineering (M-SY) - Version E - 15th November 2010

Page created by Victor Lynch
 
CONTINUE READING
Modules description
Master degree course Systems-Engineering (M-SY)

                Version E – 15th November 2010
Master Systems-Engineering - Modules description

Modules

1     Advanced Topics in Mathematics ............................................................................................... 3
2     Nonlinear and Stochastic Systems ............................................................................................. 4
3     Fields and Waves ....................................................................................................................... 5
4     Special electives (group 1) ......................................................................................................... 6
      AIT4/1      Data structures and algorithms ................................................................................ 7
      AIT4/2     Software Quality ........................................................................................................ 9
      AIT4/2     Software Quality ........................................................................................................ 9
      AIT5       Digitale Signal processing ....................................................................................... 10
      AIT6       Automation and Control Systems ........................................................................... 12
      ESY4/1 Analog Circuit Design.............................................................................................. 13
      ESY4/2 Radio Frequency Circuit Design ............................................................................. 15
      ESY5/1 Circuit Integration .................................................................................................... 17
      ESY5/1 Circuit Integration .................................................................................................... 17
      ESY5/2 IC-Produktentwicklung ............................................................................................ 18
      ESY6/1 Realtime and Embedded Systems 2....................................................................... 19
      ESY6/2 Hardware-Software-Codesign ................................................................................. 20
      KOM4/1 Integratefd RF Circuits and Components................................................................ 21
      KOM4/2 Photonic Networks .................................................................................................. 22
      KOM5/1 Radio Communication Systems .............................................................................. 24
      KOM5/2 Selected Topics in Signal Processing ..................................................................... 25
      PHO4/1 Technical Optics...................................................................................................... 26
      PHO4/2 Micro and nano characteristics of materials, Laser ................................................ 27
      PHO5/1 Optoelectronics, Optical Simulation ........................................................................ 29
      PHO5/2 Measuring optical systems ...................................................................................... 30
      MEC4/1 Micromechatronic components and systems .......................................................... 31
      MEC4/2 Konstruktion und Entwicklung ................................................................................. 33
      MDT4       Multi Modal Imaging ................................................................................................ 34
5     Project and Project Seminar ..................................................................................................... 35
6     Human Resources Mangement ................................................................................................ 36
7     Subject-related electives (group 2) ........................................................................................... 37
      7.1 Optical Waveguides and Applications * .............................................................................. 38
8     Master Thesis and Master seminar .......................................................................................... 39

                                                                    2
Master Systems-Engineering - Modules description

1      Advanced Topics in Mathematics
Weekly hours:         4
Credits:              5
Lectures:             3 SU + 1 Ü
Assessment:           See Study Plan

Aim:
x Competent knowledge in Probability and Mathematical Statistics.
x Ability to apply the knowledge to problems of System Theory.
x Competent knowledge in Linear Algebra (Matrix Algebra) and in State-Space Methods for
   Dynamical Systems, applications in the context of Electrical Engineering
x Application of software-tools (MATLAB)

Content:
x Fundamentals of Probability Theory
x Random Variables und Distributions (Continuous and Discrete Distributions, Normal
  Distribution)
x Mean Expectation and Variance
x Markov Chains and Stochastic Processes
x Linear Algebra (Matrix Algebra, Eigenvalues, Eigenvectors, Basis-Transformation and
  Diagonalization, Jordan Canonical Form, Matrix-Functions)
x State-Space Representation and Methods for Dynamical Systems (Linear and Nonlinear
  Systems of Differential and Difference Systems)
x Nonlinear Systems (Local Linearization about Equilibrium Points, Numerical Methods)

Reading list:
x Bosch: Elementare Einführung in die Wahrscheinlichkeitsrechnung, Vieweg
x Christoph, Hackel: Starthilfe Stochastik, Teubner
x Beichelt, Montgomery: Teubner-Taschenbuch der Stochastik
x Isaacson, Madsen: Markov-Chains, Theory and Application, Wiley
x Ludyk: Theoretische Regelungstechnik 1, 2 , Springer
x Lunze: Regelungstechnik 1, 2 , Springer
x Lecture notes

Workload:
It is expected that the average student will require 155 hours of study to acquire the
necessary knowledge and abilities. These hours are divided as follows:

45 hours attendance of lectures and seminars
30 hours regular study of the syllabus
20 hours solving exercises
18 hours reading and individual study
40 hours exam preparation

This is worth 5.1 credits, rounded to 5 credits.

                                                   3
Master Systems-Engineering - Modules description

2       Nonlinear and Stochastic Systems

Weekly hours:          4
Credits:               5
Lectures:              3 SU + 1 Ü
Assessment:            See Study Plan

Aim:
   x    Ability to derive models for technical systems
   x    Ability to set up simulation models systems
   x    Knowledge in methods for nonlinear system description and analysis
   x    Knowledge in advanced methods of system and signal analysis
   x    Ability to apply these methods in the fields of electrical+mechatronic systems and
        photonics

Content:
System modelling:
x Modelling methods for electrical, mechanical, thermal … systems
x Simulation of (non)linear systems

Nonlinear Systems:
x Linearization of nonlinear differential equations
x Stabiltiy definitions (BIBO, Lyapunov) and analysis (stability area determ., circle criterion)
x Limit cycles, harmonic balance

Stochastic Signals:
x Description (correlation functions, power density)
x System identification with stochastic methods
x Optimal filtering (Kalman-Filter)

Reading list:
x Girod, Rabenstein, Stenger: Einführung in die Systemtheorie; Teubner-Verlag,2002
x Unbehauen, R.: Systemtheorie 1 & 2; Oldenbourg-Verlag, München, 1997
x Föllinger, O.: Nichtlineare Regelungen 1&2, Oldenbourg-Verlag, 2001 / 1993

Workload:

It is expected that the average student will require 152 hours of study to acquire the
necessary knowledge and abilities. These hours can be divided as follows:

45   hours attendance of lectures and seminars
37   hours regular study of the syllabus
20   hours preparation of exercises and presentations
20   hours study of literature and private study
30   hours exam preparation

This is worth 5 credits.

                                               4
Master Systems-Engineering - Modules description

3      Fields and Waves
Weekly hours:          4
Credits:               5
Lectures:              3 SU + 1 Ü
Assessment:            See Study Plan

Aim:
x Deepening of knowledge about static electric and magnetic fields
x Ability to apply Maxwell’s equations task related
x Knowledge of the skin effect and its effects
x Knowledge about the properties of electromagnetic waves
x Comprehension of the behaviour of electromagnetic waves at boundary areas
x Knowledge about the most important waveguide structures
x Ability to apply line transformation
x Knowledge of line properties: characteristic impedance, coupling
x Ability to identify and use waveguide resonances
x Knowledge of the most important antenna parameters
x Knowledge of the property of dipole antennas
x Knowledge about measures against unintended radiation
x Ability to evaluate and correctly apply shieldings

Content:
x Electrostatic, magnetic and stationary flow field
x Time variant flow field
x Maxwell’s equations, propagation equation
x Skin effect
x Electromagnetic waves in free space
x Waveguides: coaxial line, hollow waveguide, microstrip line, optical fibers
x Antennas
x Shielding

Reading list:
x Zinke, Brunswig: „Lehrbuch der Hochfrequenztechnik“ Band 1, Springer Verlag
x Unger: „Elektromagnetische Wellen“ Band I und II, Vieweg Verlag

Workload:

It is expected that the average student will need 150 hours of work to acquire the necessary
knowledge and abilities. These hours can be divided as follows:

45 hours attendance in courses and assessments
30 hours regular review of the subject matter
20 hours working on exercises
25 hours literature and free work
30 hours exam preparation

This is worth 5 credits.

                                              5
Master Systems-Engineering - Modules description

4     Special electives (group 1)
Weekly hours:       24 (subjects with either 4 or 8 weekly hours)
Credits:            30
Lectures:           2 SU, 2 Pr
Assessment:         See Study plan

                                            6
Master Systems-Engineering - Modules description

AIT4/1               Data structures and algorithms

Weekly hours:        4
Credits:             5
Lectures:            2 SU + 2 PR
Assessment:          see Study Plan

Aim:
x Knowledge about basic data structures and algorithms
x Knowledge about computability theory and complexity theory
x Knowledge about automata theory and formal languages
x Knowledge about data compression and cryptography
x Knowledge about data abstraction
x Ability to analyze the complexity of algorithms and to optimize them
x Ability to choose appropriate algorithms and data structures in concrete situations
x Ability to build scanner and parser
x Ability to solve complex problems using backtracking
x Ability to implement algorithms in C, C++ and Java

Content:
x Complexity of algorithms (O-Notation)
x Considerations concerning the choice of appropriate algorithms and optimizing them
x Basic data structures (linked lists, ring list, stacks, queues, deques)
x Basics to trees (iterative realization/traversing of binary trees)
x Linear and tree recursion (recursive realization of binary and other trees (L-systems)
x Removal of recursion and runtime analysis for recursion
x Backtracking (eight queens puzzle, sudoku, searching in a labyrinth, …)
x Basic sorting algorithm (Bubble-, Insert-, Select-, Bucket- and Shell-Sort)
x Standard-Quicksort and variants of the Quicksort
x Mergesort (recursive and non recursive)
x Priority queues and the Heapsort, Radix Sort
x Automatas and formal languages (lexical and syntactical Analysis, tools lex and yacc)
x Computability theory (Church thesis, Turing-computable, register machines, GOTO-
  /WHILE-/LOOP-programs, primitive/µ-recursion, Ackermann, Chomsky-Hierarchy)
x Decidable und semi-decidable sets (Game-of-Life, halting problem, busy beaver)
x Complexity theory (classe P und NP, P=NP?, 3SAT-, CLIQUE-, Rucksack- ,Hamilton-
  problem und problem of the travelling salesman, approximations algorithms, Warnsdorff
  solution for Knight's Tour)
x Fault-tolerant codes (Hamming distance, Hamming code, CRC-Code)
x Data compression (Lossless and lossy, Fano-condition, run length, Shannon-Fano,
  Huffman, arithmetic und Lempel-Ziv)
x Cryptography (Vigenere, random series, RSA)

Reading List:
Datenstrukturen und Algorithmen; Skriptum Helmut Herold

                                             7
Master Systems-Engineering - Modules description

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These hours are divided as follows:

45 hours attendance of lectures and seminars
20 hours regular study of the syllabus
15 hours preparation of presentations
30 hours development and elaboration of solutions
15 hours reading and individual study
25 hours exam preparation

This is worth 5 credits.

                                               8
Master Systems-Engineering - Modules description

AIT4/2          Software Quality

Weekly hours:          4
Credits:               5
Lectures:              3 SU + 1 Ü/PR
Assessment:            see Study Plan

Aim
x Knowledge of quality concepts for hardware and software systems,
x Knowledge of constructive, analytic and organizational means to improve software
   system quality and software development process quality.
x Knowledge of requirements engineering techniques and methods.
x Knowledge of error causes in the software development process,
x Knowledge of software quality measures for products and processes, usability concepts,
   criteria for design and evaluation of human interface devices.
x Knowledge of Service management concepts
x Ability to select and implement appropriate quality concepts..Ability to apply the methods
   and techniques, ability to use Software process improvement models.
x Awareness of the importance of human factors in software engineering.

Content:
x Software development – facts and analysis. System quality. Requirements engineering,
  Software defects. Product metrics, process metrics, quality improvement models (e.g.
  CMM, CMMI, Spice). Constructive, analytic and organizational means in software
  development. Software process models (e.g. V-model). Inspections. Usability
  engineering. Service management concepts (e.g. ITIL).

Reading List:
x Hopf, H.-G.: Lecture Notes on Software Quality (2008)
x Hopf, H.-G.: Softwarequalität, eLearning course (vhb-Kurs), 2008

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45 hours attendance of lectures and seminars
25 hours regular study of the syllabus
20 hours construction of practise programs and solutions
25 hours preparation and presentation of solutions
15 hours reading and private study
20 hours exam preparation

This is worth 5 credits.

                                               9
Master Systems-Engineering - Modules description

AIT5 Digitale Signal processing

Weekly hours:                 8
Credits:                      10
Lectures:                     4 SU + 4 Pr
Assessment:                   See Study Plan

Aim:
x Knowledge of the most important methods for description and design of time-discrete
   systems
x Knowledge of the basics of multi-rate and multi-dimensional signal processing
x Ability of selecting application adequate schemes
x Knowledge of the most important digital signal processing realisation topics
x Ability of developing and applying digital signal processing components and systems

Content:
x Fourier, Z- and Discrete Fourier Transform
x FFT and its application
x Stochastic time-discrete signals
x Systems: input/output description, state space description, structures, filter design
x Multi-rate signal processing
x Multi-dimensional signal processing
x Digital control sample-application
x Signal processing systems construction
x Realisation options
x Digital signal processing hardware design
x Digital signal processor architectures
x Low-Level and High-Level Programming
x Quantisation effects

Reading list:
x Oppenheim, A. V. & Schafer, R. W. & Buck, J. R.; Discrete Time Signal Processing;
   Prentice Hall; 2. Aufl.; 1999
x Schüßler, H. W., Digitale Signalverarbeitung 1; Springer-Verlag; 4. Aufl.; 1994
x Werner, M.; Digitale Signalverarbeitung mit MATLAB; Vieweg; 2001
x Chassaing, R.: Digital Signal Processing and Applications with the C6713 and C6416
   DSK; Wiley&Sons, 2005
x Diniz, P. S. R. & da Silva, E. A. B. & Netto, S. L.: Digital Signal Processing; Cambridge
   University Press; 2006
x Welch, T. B. & Wright, C. H. G. & Morrow, M. G.: Real-Time Digital Signal Processing;
   CRC Press; 2005
x Skriptum und Hilfsblätter des/der Dozenten

Workload:
It is expected that the average student will require 300 hours of study to acquire the
necessary knowledge and abilities. These hours are divided as follows:

90 hours attendance of lectures and seminars
45 hours regular study of the syllabus
25 hours work on problems and examples
45 hours preparation and finishing work for lab practice
45 hours reading and private study
50 hours exam preparation

                                               10
Master Systems-Engineering - Modules description

This is worth 10 credits.

Requirements:
Basic knowledge of probabilistic calculus
Knowledge of system theory and digital signal processing basics

                                            11
Master Systems-Engineering - Modules description

AIT6 Automation and Control Systems

Weekly hours:         8
Credits:              10
Lectures:             6 SU, 2 Pr
Assessment:           See Study Plan

x   Detailed knowledge in special fields of automation, e.g., industrial robots
x   Ability to work out automation solutions with special requirements, e.g., fault-tolerant
    automation systems
x   Ability to solve automation problems by means of advanced design methods, e.g., Petri
    nets
x   Ability to design complex automation systems with distributed intelligence
x   Detailed knowledge in digital motion control (feedforward and feedback)
x   Ability in the direct design of digital controllers
x   Detailed knowledge of state estimation, nonlinear and adaptive control

Content:

x   Industrial robots / handling systems
x   Fault-tolerant automation systems
x   Remote diagnosis, e.g., with Internet technologies
x   Networked automation systems, Petri nets
x   Digital motion control and closed loop control, electronic gear, leading axle systems
x   Observability and controllability of systems
x   Time-discrete systems and digital state space control
x   Direct design of discrete time controllers
x   Signal filtering and state estimation
x   Nonlinear and Adaptive control strategies

Reading list:
x Weber: Industrieroboter, Fachbuchverlag Leipzig 2002
x Comacchio, A.: Automation in automotive industries, Springer-Verlag
x Schnieder, E. (Hrsg.): Petri-Netze in der Automatisierungstechnik, Oldenbourg-Verlag
x Isermann, R.: Digitale Regelsysteme, Springer-Verlag
x Unbehauen, H.: Regelungstechnik II, Vieweg-Verlag

Workload:

It is expected that the average student will require 304 hours of study to acquire the
necessary knowledge and abilities. These hours can be divided as follows:

90 hours attendance of lectures and seminars
40 hours regular study of the syllabus
24 hours working on exercises
70 hours preparation and presentation of experiments and elaboration of solutions
30 hours reading and private study
50 hours exam preparation

This is worth 10 credits

                                              12
Master Systems-Engineering - Modules description

ESY4/1          Analog Circuit Design

Weekly hours:          4
Credits:               5
Lectures:              2 SU + 2 PR
Assessment:            See Study Plan

Aim:
x Knowledge of most important characteristics of commonly used basic functional circuits
   and how to dimension/optimise the behaviour of functional circuits;
x Ability to decompose complex electronic circuits into basic functional circuits;
x The aim is to bring students into the position of being able to develop analog circuits to
   meet given characteristics by starting with selected basic functional circuits, to adapt
   functional circuits and to build complex electronic circuits.

Content:
Basic functional circuits:
x Summary of basic functional circuits with operational amplifiers, bipolar-transistors and
   MOS-transistors;
x summary of methods to get operating points and to pre-estimate linearised transistor-
   level circuits to get characteristics and to verify influences to characteristics and the
   stability of a circuit with feedback;
x basic functional transistor-level circuits: basic amplifiers, differential amplifiers, current
   sources, voltage sources, output stages, oscillators, mixers.
Phase-locked-loop circuits:
x System components, behaviour, characteristics, applications.
x AD/DA-converters: Sample&hold, sampling theorem, impacts to failure, flash-converter,
   pipeline-structures, successive approximation, counting procedures; Delta-Sigma
   converter
Powerstages:
x Power supplies, switching power supplies
x Reliable electronic systems: Introduction toelectromagnetic compatibility and fail-safe
   considerations by assembling electronic modules to systems.
Laboratory experiments:
x Development of an optical transmission system with coder, transmitter, receiver, clock-
   recovery, decoder

Reading list:
[1] Siegl, J.: „Schaltungstechnik - Analog und gemischt analog/digital“, Springer Verlag, 2.
Auflage, 2005
[2] Siegl, J.: „Elektronik 3 - Funktionsschaltkreise“, www.efi.fh-nuernberg.de/elearning

                                               13
Master Systems-Engineering - Modules description

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45 hours attendance of lectures and seminars
15 hours regular study of the syllabus
15 hours work on exercises and examples
40 hours work on laboratory experiments
15 hours reading and private study
20 hours exam preparation

This is worth 5 credits.

Requirements: Electronics 1, Electronics 2

                                              14
Master Systems-Engineering - Modules description

ESY4/2          Radio Frequency Circuit Design

Weekly hours:        4
Credits:             5
Lectures:            2 SU + 2 PR
Assessment:          See Study Plan

Aim:
x Knowledge of how to model and consider parasitics in high speed circuits; students
   should know IO-models for interfaces and the transfer characteristics of transmission
   lines, coupled transmission lines, up to reflection and corsstalk effects;
x Ability to dimension/optimise matching networks by using smith-charts; knowledge of
   analysing high-frequency system-modules by using S-parameters and signal-flowcharts;
x Ability to design RF-transmitters up to power amplifiers and RF-receivers by considering
   noise behaviour, bandwidth, matching requirements and stability;
x Basic skills in using modern tools for RF-design definition, design verification and
   optimisation.

Content:
Analysis and modelling of structures in RF-circuits:
x Characteristics, behaviour and modelling of transmission lines in frequency/time domain;
   reflection analysis;
x coupled transmission lines, directional couplers, cross talk; parasitics in RF-systems and
   modelling of parasitics.
S-Parameter analysis:
x Definition and determining of S-parameters, signal-flow charts, S-parameter
   measurement techniques, analysing of RF-systems by using S-parameters.
RF-amplifier design:
x Design/optimisation of matching networks for input/output, stability conditions,
   preventions to avoid unstable systems, noise, noise figure, noise measurement
   techniques, noise matching, control limits, distortion analysis and distortion
   characteristics
RF-Components:
x Behaviour and characteristics of mixers, filters and oscillators;
x practical examples, development and construction of selected examples.
RF-transmitter and RF-receiver:
x System architecture of transmitters and receivers, selecting components for transmitters
   and receivers;
x digital modulation/demodulation of baseband signals for RF-transmission systems, I/Q
   modulation schemes.
Laboratory experiments:
x Development of a low noise amplifier for GPS; simulation with ADS;
x design, layout and assembling a test-circuit;
x measurement techniques with a networkanalzer (S-Parameter), spectrum-analyzer
   (control limits, IP3) and to get the noise-figure.

                                             15
Master Systems-Engineering - Modules description

Reading list:
Siegl, J.: „Hochfrequenzschaltungstechnik“, www.efi.fh-nuernberg.de/elearning

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:
45 hours attendance of lectures and seminars
15 hours regular study of the syllabus
15 hours work on exercises and examples
40 hours work on laboratory experiments
15 hours reading and private study
20 hours exam preparation

This is worth 5 credits.

Requirements:
Electronics 1, Fields and Waves

                                              16
Master Systems-Engineering - Modules description

ESY5/1          Circuit Integration

Weekly hours:          4
Credits:               5
Lectures:              2 SU + 2 PR

Requirements:
Basic understanding of analogue and digital circuit design

Aim:
Know how to design integrated circuits in CMOS and BICMOS technology

Content:
x Semiconductor technologies; basic principles of full custom design, layout rules, layout
  and modeling of passive integrated Elements:
x R, L, C, Transmission-line; design, layout and modeling of MOS transistors and BJTs;
  parasitics, design-centering;
x design of analogue and digital basic-cells, functional circuits using MOS and bipolar
  transistors;
x Design for testability, failures and problems in IC-Design

Reading List:
Zocher, E.: Skript Schaltungsintegration, Georg-Simon-Ohm-Hochschule Nürnberg, 2008

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and seminars
15     hours regular study of the syllabus
15     hours working on exercises
40     hours construction of practice programs and solutions
10     hours reading and private study
25     hours exam preparation

This is worth 5 credits.

                                              17
Master Systems-Engineering - Modules description

 ESY5/2          IC-Produktentwicklung

 Weekly hours:              4
 Credits:                   5
 Lectures::                 2 SU + 2 PR

 Requirements:
 x    Grundlagen der Halbleiterphysik
 x    Elektronische Bauelemente
 x    Grundlagen der Digitaltechnik
 x    Grundlegende analoge Schaltungen: Differenzverstärker, Stromquelle etc.
 x    Rechnergestützter Schaltungsentwurf auf Schaltkreisebene (SPICE, …)
 Aim:
 x    Kenntnis und Bedienung gängiger Entwicklungswerkzeuge für den Entwurf integrierter
      Schaltungen
 x    Analoger und digitaler Schaltungsentwurf und Aufbau einer Chip-Hierarchie
 x    Organisation und Durchführung eines Entwicklungsprojektes
 x    Vertiefung ausgewählter Themengebiete moderner höchstintegrierter Halbleitertechnologien
 Content:
 x    Projektplanung und Organisation
 x    Gegenüberstellung von Full Custom und Semi Custom Design
 x    Full Custom Design Flow zur Erstellung integrierter Schaltungen
 x    Full Custom Layout Flow zur Erstellung integrierter Schaltungen
 x    Leckstrompfade und energiesparende Schaltungstechniken
 x    Erzeugung von Maskendaten für die Fabrikation: Lithographie und OPC (Optical Proximity
      Correction)
 x    Design for Manufacturing: 6 Sigma Design und Verifikationsstrategien
 x    Strahlungsfestigkeit integrierter Schaltungen (Soft Error Rate)
 x    Zuverlässigkeit und Lebensdauer integrierter Schaltungen
 x    Erweiterte analoge und digitale Funktionsblöcke
 x    Praktikum: Durchführung eines Entwicklungsprojektes im Team. Entwurf eines 1Mbit SRAM
      (Static Random Access Memory). Erstellung und Verifikation der Funktionsblöcke wie SRAM
      Core, Zeilen- und Spaltendecoder, Adress- und Kommandodecoder, I/O (Input/Output
      Schaltungen), Generatorsystem, Aufbau der Chip-Hierarchie
 Reading list:
x   U. Tietze, Ch. Schenk, E. Gamm, Halbleiter-Schaltungstechnik, Verlag Springer, Berlin.
x   Baker, Li, Boyce, CMOS Circuit Design, Layout, and Simulation, IEEE Press
 Workload:
 It is expected that the average student will require 150 hours of study to acquire the
 necessary knowledge and abilities. These are divided as follows:

 45      hours attendance of lectures and seminars
 25      hours regular study of the syllabus
 45      hours Bearbeitung von Praktikumsaufgaben
 15      hours reading and private study
 20      hours exam preparation

 This is worth 5 credits.

                                                18
Master Systems-Engineering - Modules description

ESY6/1          Realtime and Embedded Systems 2

Weekly hours:          4
Credits:               5
Lectures:              2 SU + 2 PR
Assessment:            See Study Plan

Aim:
x Knowledge of one dedicated microcontroller
x Deepend knowledge of some special I/O-Modules
x Knowledge of system security aspects e.g. brown out detection and watchdog handling
x Knowledge of Low Power technology
x Ability to develop a microcontroller board in hard- and software
x Knowledge of the special demands of embedded realtime systems
x Deepend knowledge of intertask services of embedded operating systems
x Knowledge of bus and network communication services
x Ability to design, develop and test system- and application software in communicating
   embedded and realtime systems

Content:
x Secure handling of general I/O-Modules
x Deepend look at special modules e.g. clock control, brown out detection, watchdog and
  low power
x Practical exercises on a special training board (efiCAN), developed for this course
x Inclusion of I/O-Tasks in a realtime operating system
x Components and function of embedded and realtime-operating systems
x Presentation of and introduction to a commercial realtime-operating system
x Design of application software for a communicating embedded and realtime system

Reading list:
x Peter Urbanek: Embedded Systems, 2007, HSU-Verlag
x M.Homann, OSEK, mitp; H.Kopetz, Real-Time Systems, Kluwer;
x J.W.S.Liu, Real-Time Systems, Prentice Hall; D.E.Simon, An Embedded Software
   Primer, Addison-Wesely;

Workload:
It is expected that the average student will require 153 hours of study to acquire the
necessary knowledge and abilities. These hours can be divided as follows:

45   hours attendance of lectures and seminars
15   hours regular study of the syllabus
15   hours preparation of exercises and presentations
35   hours programming and solutions of problems in software
18   hours study of literature and private study
25   hours exam preparation

This is worth 5 credits.

Requirements:
Realtime- und Embedded Systems 1

                                              19
Master Systems-Engineering - Modules description

ESY6/2          Hardware-Software-Codesign

Weekly hours:          4
Credits:               5
Lectures:              2 SU + 2 PR
Assesment:             see Study Plan

Aim:
x Introduction to the subject of Hardware Software Co-designs;
x Knowledge of methods and procedures for the development of hardware and software
   systems;
x Ability to perform systematic hardware and software partitioning.

Content:
x Target architectures for HW/SW-Systems,
x System Design - methods and models of system partitioning,
x estimation of the design quality,
x modelling concepts,
x abstraction levels,
x design technologies and processes,
x approaches for system-level descriptions,
x basics for self-testing architectures,
x prototyping and emulation,
x hardware software co-verification.
x Target architectures for hardware- and software-Systems
x Comparison of hardware and software
x System designing – methods and models
x System partitioning
x Estimation of the design quality
x Emulation and rapid-prototyping
Models of communication

Reading List:
[1] Teich, J. : Digitale Hardware/Software-Systeme, Springer Verlag, 2007, 2. Auflage,
 ISBN 978-3-540-46822-6

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and seminars
20     hours regular study of the syllabus
45     hours construction of practice programs and solutions
15     hours reading and private study
25     hours exam preparation

This is worth 5 credits.

Requirements:
Basic understanding of digital technology, computer technology and microprocessor
technology, Knowledge of a programming language
Mathematical optimisation and graph algorithm (see [1] Anhang B und C)

                                              20
Master Systems-Engineering - Modules description

KOM4/1          Integratefd RF Circuits and Components

Weekly hours:        4
Credits:             5
Lectures:            2 SU + 2 PR
Assessment:          See Study Plan

Aim:
x Kenntnis des Aufbaus und der Wirkungsweise von monolithisch integrierten
   Hochfrequenz-systemen,
x Fähigkeit zur Beurteilung der Eigenschaften integrierter Hochfrequenzschaltungen und –
   systeme im Hinblick auf ihren Einsatz in nachrichtentechnischen Systemen

Content:
Vorlesung:
x Einführung in Software defined radio – Konzepte, Anforderungen und Randbedingungen
x Konzepte für die HF-Komponenten in „software defined radio“ – Nachrichtensystemen:
x Multimode Empfänger Front End Architekturen: Verstärkung, Filterung,
   Frequenzumsetzung, Digitalisierung
x Multimode-Sender: D/A-Umsetzung, Frequenzumsetzung, Verstärkung, Filterung
   integrierte breitbandige Antennen
x Umsetzung der Konzepte in integrierten Hochfrequenzschaltungen (MMICs)
x Verfügbare Technologien und ihre Eigenschaften: Si, SiGe, III-V
x Aktive und passive Bauelemente, Transistoren (HEMT, HBT, …) Kapazitäten,
   Induktivitäten, …
Praktikum:
x Charakterisierung integrierter HF-Systeme und Einsatz in beispielhaften
   Systemanwendungen, z.B.
x Integrierte Transceivermodule für Mobilfunk, WLAN etc.
x LNCs für Satellitenempfang
x Treiber/Empfänger für optische Kommunikation

Reading list:
W. Tuttlebee (Ed.), Software defined radio – Enabling Technologies, Wiley 2002

Workload:
Es wird angenommen, dass ein durchschnittlicher Student 150 Stunden Arbeitsaufwand
benötigt, um sich die genannten Kenntnisse und Fähigkeiten anzueignen. Diese verteilen
sich wie folgt:

45    Std. Präsenz in Lehrveranstaltungen und Übungen
20    Std. Regelmäßige Nachbereitung des Lehrstoffes
45    Std. Aufbau und Analyse von Testschaltungen mittels Simulation und Messung
15    Std. Literaturstudium und freies Arbeiten
25    Std. Prüfungsvorbereitung
Daraus ergeben sich 5 Leistungspunkte.

Voraussetzungen:
Übertragungstechnik, Nachrichtentechnik, Hochfrequenzsystemtechnik

                                            21
Master Systems-Engineering - Modules description

KOM4/2          Photonic Networks

Weekly hours:         4
Credits:              5
Lectures:             4 SU
Assessment:           See Study Plan

Aim:
x Aim of the lectures is the presentation of a wide knowledge about technologies for optical
   data communication and the applications in present broadband telecommunication
   networks with a focus on access networks.
x Basic properties of the different optical fibers (single mode, multi mode, hybrid, polymer
   and micro structured fibers) as attenuation, dispersion and nonlinear effects will be
   covered.
x Students will learn about the various passive (splitters, connectors, filters) and active
   (emitter diodes, photo diodes, amplifiers, modulators, switches) optical components and
   their operation principles.
x Standard optical transmission technologies, as well as special methods (coherent
   transmission, free space communication) will be presented in the lectures.
x A special topic will be optical short range transmission systems (car networks, inhouse
   networks, optical waveguides).
x The application of optical data transmission will be shown with the example of long haul
   networks (oceanic systems, SDH systems, WDM and OTN technologies). A special topic
   is the use of photonics in broadband access networks.
x Besides the pure optical networks (FTTH), hybrid applications (like DSL, HFC and BWLL)
   will be investigated too. Satellite systems and Powerline Communication will be
   introduced for comparison.
x Students shall be enabled to evaluate the different existing and new developed solutions
   with respect to their service capabilities, economical effort, reliability and capacity in
   different service scenarios.
x Technical and economical conditions for the introduction of new services and
   technologies will be treated based on subscriber growth.

Content:
x Principles, construction, properties and manufacturing of optical fibers and waveguides
x Transmission properties (attenuation, dispersion, nonlinear effects)
x application areas of the different types, function and characteristic data of optoelectronic
  components (LED, laser diodes, pin diodes)
x passive fiber optic components (splitters, connectors, filters)
x basic layouts and systems of the optical transmission technology
x wavelength multiplexing and transparent optical networks
x optical short range transmission (car networks, in house networks, interconnection)
x System design and power budgets
x Broadband networks on coaxial cables
x terrestrical, satellite and cable TV in comparison, analog and digital TV, HFC concepts,
  ADSL and VDSL in comparison, roll out strategies for broadband access networks, the
  FSAN initiative, glass fiber access for subscriber loops, BiDi transceiver
x satellite and radio systems, LEO, GEO and MEO in comparison, satellite TV, Sky-DSL,
  concepts for broadband radio, CDMA, mobile radio systems
x Services and comparison of the technologies: bit rates and load, multiplexing, broadcast
  and switched services, comparison of coaxial and phone networks, telecommunication in
  Germany, typical services, technology overview, building networks as part of the access
  networks

                                              22
Master Systems-Engineering - Modules description

Reading list:
x H. Hultzsch: “Optische Telekommunikationssysteme”, Damm-Verlag 1996
x Mertz, M. Pollakowski: “xDSL & Access Networks”, Prentice Hall, 2000
x U. Queck: “Kupferkabel für Kommunikationsaufgaben”, Richard Pflaum Verlag GmbH &
   Co. KG München, 2000
x L. Starke: Grundlagen der Funk- und Kommunikationstechnik”, Hüthing Verlag
   Heidelberg, 1996
x G. Siegmund: “Intelligente Netze”, Hüthing Verlag Heidelberg 2001
x W.-D. Haaß: “Handbuch der Kommunikationsnetze”, Springer Verlag Berlin 1997
x Voges, Petermann “Optische Nachrichtentechnik”, Springer 2002
x H. Hultzsch: “Optische Telekommunikationssysteme”, Damm-Verlag 1996
x F. Pedrotti, L. Pedrotti. W. Bausch, H. Schmidt: “Optik für Ingenieure”
x O. Ziemann, J. Krauser, P. E. Zamzow, W. Daum: ”POF Handbuch - Optische
   Kurzstrecken-Übertragungssysteme”, Springer-Verlag Berlin Heidelberg 2007
x O. Ziemann, J. Krauser, P. E. Zamzow, W. Daum: ”POF Handbook - Optical Short Range
   Transmission Systems”, Springer-Verlag Berlin Heidelberg 2008

Workload:

It is expected that the average student will require 152 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45 hours attendance of lectures and seminars
22 hours regular study of the syllabus
15 hours construction of practice programs and solutions
45 hours reading and private study
25 hours exam preparation

This is worth 5 credits.

Requirements:
As a requirement, students must have attended a basic lecture about optical communication
including laboratory courses (e.g. B-EI-KT1/2).

                                              23
Master Systems-Engineering - Modules description

KOM5/1          Radio Communication Systems

Weekly hours:         4
Credits:              5
Lectures:             SU 4
Assessment:           See Study Plan

Aim:
x Knowledge of the different requirements for terrestrical local and wide area radio systems
x Knowledge of requirements to satellite radio systems
x Ability to identify typical disturbances (fading, interference, …) on the radio channel
x Knowledge of specific methods to minimize the effects of these disturbances
x Ability to set up level diagrams
x Ability to extract components requirements out a level diagram
x Ability to choose and evaluate frequencies, frequency pairings and modulation schemes
   according to specific applications
x Knowledge of the most important components of a radio system
x Ability to evaluate and specify these components
x Abilty to evaluate the inter system interference of different radio services

Content:
x Using the examples cellular/satellite radio and WLAN/Bluetooth the following will be
  demonstrated:
  Requirements of specific radio services
  Multiplexing
  Essential characteristics of RF components (oscillators, modulators, antannas, …)
  Level diagrams with particular respect to noise
  Specific propagation phenomena like fading, multipath fading, interference, …
  Modulation schemes used (GMSK, QPSK, OFDM, …)

Reading list:
x Mouly, Pautet: „The GSM System for Mobile Communications “, Eigenverlag
x Holma, Toskala: „WCDMA for UMTS“, J. Wiley
x Roth: “Mobile Computing”, dpunkt-Verlag
x Dodel, Schambeck: “Die Satellitenkommunikation”, Springer

Workload:
It is assumed that an average student will need 145 hours of work to acquire the mentioned
knowledge and abilities. These hours are divided as follows:

45 hours attendance in courses and assessments
35 hours regular review of the subject matter
15 hours working on exercises
25 hours literature and free work
25 hours exam preparation

This is worth 5 credits

                                            24
Master Systems-Engineering - Modules description

KOM5/2          Selected Topics in Signal Processing

Weekly hours:          4
Credits:               5
Lectures:              2 SU, 2 Pr
Assessment:            See Study Plan

Aim:
x Knowledge of signal processing algorithms applied in modern digital communication
   schemes
x Knowledge of basic estimation approaches applied in digital receivers
x Ability of evaluation and selection of the named principles
x Overview of efficient realization methods for digital communication systems

Content:
x FFT-based down conversion
x Multi-rate systems (theory, implementation aspects)
x Asynchronous parametric resampling
x Adaptive filters
x Maximum-Likelihood Estimation
x Blind Channel Estimation
x Blind Equalization Approaches

Reading list:
x Proakis, J. G.; Digital Communications; McGraw-Hill, New York; 4. Aufl.; 2000
x Kammeyer, K.-D.; Kroschel, K.; Digitale Signalverarbeitung; Teubner, Stuttgart; 6. Aufl.;
   2006
x Kammeyer, K.-D.; Nachrichtenübertragung; Teubner, Stuttgart; 3. Aufl.; 2004
x Skriptum des Dozenten

Workload:
It is expected that the average student will require 146 hours of study to acquire the
necessary knowledge and abilities. These hours are divided as follows:

45 hours attendance of lectures and seminars
16 hours regular study of the syllabus
15 hours work on problems and examples
35 hours preparation and finishing work for lab practice
10 hours reading and private study
25 hours exam preparation

This is worth 5 credits.

Requirements:
Basic knowledge of probabilistic calculus
Knowledge of system theory and digital signal processing basics

                                              25
Master Systems-Engineering - Modules description

PHO4/1          Technical Optics

Weekly hours:         4
Credits:              5
Lectures:             2 SU, 2 Pr
Assessment:           See Study Plan

Aim:
x Thorough comprehension of the design and function of passive optical systems
x Ability to characterize and to model optical systems
x Knowledge of the relevant descriptions in the particle or the wave model to explain optical
   phenomena
x Extension of the ability to measure the properties of optical systems
x Thorough comprehension of the function and properties of radiation sources and –
   detectors
x Ability to transfer the know-how from theory to practice, firstly by coarsely defined tasks
   and secondly in smaller projects.

Content:
x Ray-optical modelling of lens systems and optical instruments.
x Optical measurement techniques, such as
  x characterisation of optoelectronic components
  x quality of digital cameras
  x polarisation: measurement and applications
  x transmission properties of multimode optical fibers
  x characterisation of laser beams
  x fluorescent properties of materials
x Technical radiation sources and –detectors
x Deepening of radiometric and photometric measurements

Reading list:
x Schröder/Treiber, Technische Optik, Vogel-Verlag 2007
x Pedrotti et al., Optik für Ingenieure, Springer 2005

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and practical training
20     hours regular study of the syllabus
35     hours construction of practice programs and solutions
25     hours reading and private study
25     hours exam preparation

This is worth 5 credits.

                                              26
Master Systems-Engineering - Modules description

PHO4/2          Micro and nano characteristics of materials, Laser

Weekly hours:        4
Credits:             5
Lectures:            4 SU
Assessment:          See Study Plan

Aim:
x knowledge of relation between optical properties and microscopic construction of
   condensed matter(Kenntnis des grundlegenden Zusammenhangs von optischen
   Volumeneigenschaften mit dem mikroskopischen Aufbau)
x knowledge of relation betwwen optical surface characteristics and micro-/nano scaling
   structures (Kenntnis des Zusammenhangs optischer Oberflächeneigenschaften und
   mikro-/ nanoskaligen Strukturen)
x knowledge of atomar binding and energy bands (Kenntnis der atomaren Bindungen und
   der Energiebänder)
x knowledge of excited states in condesed matter and possible energy transitions
   (Kenntnis angeregter Zustände im Festkörper und entsprechender energetischer
   Übergänge)
x ability to correlate measured optical/electrical characteristics with the mikorscopic
   construction of condesed matter; ways to modify the microscopic construction of
   condesed matter (Fähigkeit, gemessene optische / elektrische Eigenschaften mit dem
   mikroskopischen Aufbau zu korrelieren und Wege für gezielte Modifikationen abzuleiten)

Content:
x condsed matter construction and bonding behaviour (Aufbau und Bindungsverhältnisse
  von Festkörpern)
x reciprocal lattice and Brillouin zone (Reziprokes Gitter und Brillouin-Zonen)
x lattice waves and its coupling on electromagnetic waves (Gitterschwingungen und ihre
  Kopplung an elektromagnetische Strahlung)
x Fermi gas and electronic band structure (Fermigas und Energiebänder)
x low dimensional semiconductors (Niedrigdimensionale Elektronensysteme in Halbleitern)
x optical properties like absoption, reflection and scattering (Optische Eigenschaften wie
  Absorption, Reflexion, Streuung)
x optical processes in the volume and at the surface (Optische Prozesse im Volumen und
  an der Oberfläche)

Reading list:
x Ch. Kittel: Einführung in die Festkörperphysik, Oldenburg Verlag, 2005
x H. Ibach, H. Lüth: Festkörperphysik, Springer-Verlag, Berlin 2002
x J. Eichler, H. J. Eichler: Laser (Bauformen, Strahlführung, Anwendungen),
x Springer 2002
x H. Treiber: Lasertechnik, Frech-Verlag Stuttgart 1982
x H. Treiber: Der Laser in der industriellen Fertigungstechnik,
x Hoppenstedt Verlag Darmstadt 1990
x Donges, R. Noll, Lasermeßtechnik, Hüthig Verlag Heidelberg 1993

                                            27
Master Systems-Engineering - Modules description

Workload:

It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and practical training
30     hours regular study of the syllabus
25     hours work on problems and examples
25     hours reading and private study
25     hours exam preparation

This is worth 5 credits.

                                              28
Master Systems-Engineering - Modules description

PHO5/1          Optoelectronics, Optical Simulation

Weekly hours:          4
Credits:               5
Lectures:              2 SU, 2 S
Assessment:            See Study Plan

Aim:
x knowledge of characteristics of condesed matter used for optoelectronic semiconductor
   devices (Kenntnisse über Eigenschaften von Materialien für optoelektronische
   Halbleiterbau-elemente
x comprehension of physical principals used for generating and detecting light within
   semiconductors (Verständnis von physikalischen Prinzipien für die Erzeugung und
   Detektion von Licht in Halbleitern)
x knowledge about semiconductor sources their construction and mode of operation,
   knowledge of semiconductor detectors (Kenntnisse über Aufbau und Wirkungsweise von
   Halbleiterlichtquellen und Detektoren)
x comprehension on basic circuit arrangement for emitters and receivers (Verständnis von
   Grundschaltungen für den Betrieb von Sendern und Empfängern)
x Kompetenz, ein umfangreiches, abstraktes Thema aus der Optoelektronik verständlich
   vorzustellen
x Fähigkeit, neuere Entwicklungen auf dem Gebiet der Optoelektronik einordnen und in
   Grundzügen verstehen zu können
Content:
x basic semiconductor physics (Halbleiterphysikalische Grundlagen)
x light and condensed matter
x construction and mode of functioining of semiconductor light sources (LED, LD, VCSEL)
x detectors (pin-Photodiode, APD, MSM-PD)
x basic circuit arrangements for sources and detectors
x manufacturing technologies and applications of optoelectronic devices
x excursion to industry
x Modelling of Lightsources
x Modelling of Surface Properties
x Modelling of Material Properties
x Methods of Analyzation
x Modelling of optical System
x Programming in Makro Language

Reading list:
x Bludau Wolfgang: Halbleiter-Optoelektronik. Hanser, München 1995.
x Schiffner Gerhard: Optische Nachrichtentechnik. Teubner, Wiesbaden 2005.

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and practical training
25     hours regular study of the syllabus
15     hours work on problems and examples
30     hours preparation of the presentation
15     hours reading and private study
20     hours exam preparation

This is worth 5 credits.

                                              29
Master Systems-Engineering - Modules description

PHO5/2          Measuring optical systems

Weekly hours:          4
Credits:               5
Lectures:              2 SU, 2 Pr
Assessment:            See Study Plan

Aim:
x Know-how of different options to design and set up optical measuring systems
x Identification of critical parameters influencing the measured results
x Ability to develop software for control of measuring processes, for signal detection and -
   processing
x Extension of the abilities in optical measurement techniques
x Ability to separate critical parameters
x Ability to transfer the know-how from theory to practice, firstly by coarsely defined tasks
   and secondly in smaller projects
x Ability to precisely describe and discuss measurement results.

Content:
x Short introduction into data acquisition software
x Short introduction into graphical presentation of results incl. fitting and smoothing
  processes.
x Spectroscopical measurments, emission, absorption and fluorescence
x Confocal microscopy
x Near- and far-field measurments @ light sources and fibers
x Characterisation of optical transmission systems (attenuation, bandwidth, BER,..)
x Measuring of planar light sources (uniformity, radiance,...)
x Special tasks

Reading list:
x Labview
x Ziemann et al. , POF - Optische Polymerfasern für die Datenübertragung, Springer 2001
x Hans-Georg Unger, Optische Nachrichtentechnik. Band 2: Komponenten, Systeme,
   Meßtechnik, Hüthig Verlag 1992
x Schröder/Treiber, Technische Optik, Vogel-Verlag 2007

Workload:
It is expected that the average student will require 150 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and practical training
20     hours regular study of the syllabus
35     hours development, elaboration and presentation of solutions
25     hours reading and private study
25     hours exam preparation

This is worth 5 credits.

                                              30
Master Systems-Engineering - Modules description

MEC4/1          Micromechatronic components and systems

Weekly hours:         4
Credits:              5
Lectures:             2 SU, 2 Pr
Assessment:           See Study Plan

Aim:
x knowledge of design and basic principles of micromechatronic components (sensors,
   actuators, functional elements) which are important for their operation and for the design
   and built of according systems and production facilities
x knowledge of the integral design work, the interaction and the mathematical description
   of simple and complex mechatronic systems
x ability to evaluate, select and dimension mechanical, electronic and optical sensors and
   actuators in micro-dimensions
x combine mechanical, electronic and optical components to built adequate “micro-
   mechatronic” components and systems

Content:
x basics of structural design and packaging techniques. Physical and technological
  knowledge of micro-sensor and micro-actuator principles and their mathematical
  description
x design and application of micro-sensors to measure nonelectrical physical values
  including e.g. resistive, capacitive, inductive or transforming elements
x physical and technological fundamentals of generating motion, mechanical force and
  torque using micro-actuators and micro-drives
x integration of micromechanics, microelectronics, micro optics and information techniques
  to micro-mechatronic systems
x special subjects of micro-fabrication technologies (lithographie, thinfilm technologies,
  etching- and laser structuring techniques. Applications of micro-mechatronic systems

Reading list:
x R. Brück; N. Rizvi; A. Schmidt: Angewandte Mikrosystemtechnik; Hanser Verlag
   München Wien; 2001
x W. Menz; J.Mohr: Mikrosystemtechnik für Ingenieure; VCH Verlagsgesellschaft mbH,
   Weinheim; 1997
x U. Mescheder: Mikrosystemtechnik Konzepte und Anwendungen; Teubner Verlag
   Stuttgart
x G. Gerlach; W. Dötzel: Grundlagen der Mikrosystemtechnik; Carl Hanser Verlag
   München Wien; 1997
x W. Ehrfeld; Handbuch Mikrotechnik; Carl Hanser Verlag; München Wien; 2002
x S. Büttgenbach; Mikromechanik; Teubner Verlag; Stuttgart; 1994
x Walter Daenzer: Systems Engineering. Methodik und Praxis. 10. Aufl. Zürich: Verlag
   Industrielle Organisation 1999.

                                             31
Master Systems-Engineering - Modules description

Workload:
It is expected that the average student will require 154 hours of study to acquire the
necessary knowledge and abilities. These are divided as follows:

45     hours attendance of lectures and practical training
32     hours regular study of the syllabus
30     hours preparation of experiments and writing test reports
20     hours reading and individual study
27     hours exam preparation

This is worth 5 credits.

                                              32
Master Systems-Engineering - Modules description

MEC4/2          Konstruktion und Entwicklung

Weekly hours:          4
Credits:               5
Lectures:              2 SU, 2 Pr
Assessment:            See Study Plan

Aim:
   x     Methods for product development process: from idea to virtual product
   x     engineers, who can realize design relevant parts due to the guidelines by a designer
         with eningeering knowledge
     x   usability friendly design and design with plastic materials
     x   surface modelling in CAD
     x   photorealistic rendering

Content:
  x fundamentals of usability friendly design
  x fundamentals of plastic design
  x funamentals of NURBS
  x optimization of High Lights

Workload:
It is expected that an average student needs 153 work hours, distributed as follows:

45       hours attendance of lectures and practical training
45       hours individual training in CAD Laboratory
20       hours regular study of the syllabus
18       hours reading and individual study
45       hours exam preparation

This is worth 5 credits.

                                               33
Master Systems-Engineering - Modules description

MDT4            Multi Modal Imaging

Weekly hours:         4
Credits:              10
Lectures:             6 SU + 2 PR
Assessment:           see Study Plan

Aim:
x Deepened knowledge of device technologies from various radiological modalities
x Deepened knowledge of methods for image processing of medical images
x Capability to develop components for various Imaging Systems
x Knowledge of work flows in Healthcare
x Capability to improve medical work flows regarding IT-based solutions
x Capability to apply standards and laws in the development of medical products

Content:
x Deepening and implementation of selected processing steps of different medical
  modalities, e.g. X-ray diagnostics, computed tomography, magnetic resonance imaging,
  ultrasound, nuclear medicine
x Deepening and implementation of methods for image processing and for extraction of
  relevant image details (filtering, segmentation, image fusion, 3D)
x Insight into specific applications, e.g. cardio, quantitive CT
x Insight into the application of radiological modalities for planning and execution of
  operations
x Insight into 4D-Imaging
x Medical workflows
x Communication, archiving and security concepts in hospital
x Application of the Medical Device Law

Reading List:
x Willi A. Kalender: Computed Tomography, Publicis Corporate Publishing
x Dietrich W. R. Paulus, Joachim Hornegger: Applied Pattern Recognition. A practical
   introduction to Image and Speech Processing in C++

Workload:
It is expected that the average student will require 294 hours of study to acquire the
necessary knowledge and abilities. This divided as follows:

90 hours attendance of lectures and seminars
25 hours regular study of the syllabus
35 hours preparation of experiments and presentations
20 hours working on exercises
45 hours construction of practise programs and solutions
34 hours reading and private study
45 hours exam preparation

This is worth 10 credits.

                                              34
You can also read