Flame-made gas sensing devices of high selectivity
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
spread the fragrance of knowledge… St. Paul's 2nd Letter Corinthians 2:14-15 Flame-made gas sensing devices of high selectivity Sotiris E. Pratsinis Particle Technology Laboratory, Department of Mechanical & Process Engineering, ETH Zurich, Switzerland 1 The pdf of this talk is available upon request
Flame Synthesis of Materials [1] Fundamentals Particle structure and size distribution [2] π k fv = 6 ∑N d i =1 i 2.22 m ,i d p0.78 [3] [4] J. Catal., 213, 296-304 (2003) to 5 kg/h @ univ. labs 1. Kelesidis, Goudeli, SEP, Carbon, 121, 527-535 (2017). 2. 3. 4. Kelesidis, SEP, Combustion and Flame, 209, 493-499 (2019) Kelesidis, SEP, Proc. Comb. Instit. 38, 1189-1196 (2021). Strobel, SEP, J. Mater. Chem., 17, 4743 - 4756 (2007). Applications 2
Flame Synthesis of Materials Fundamentals x=1 2 6 10 25 50 75 95 98 antibacterial nano-silver London Stock Exchange December 2020, 127 M £ Gas Sensing Devices J. Catal., 213, 296-304 (2003) Applications G.A. Sotiriou, SEP, Environ. Sci. Technol., 44, 5649 (2010) M.J. Height, SEP. EP1846327, 2007 Catalysis, Batteries, Biomaterials, etc 3 J. van den Broek, I.C. Weber, A.T. Güntner, SEP, Mater. Horiz. 8, 661-684 (2021).
Gas Sensors $2.3 B/y[1]. Much higher impact (like catalysis): False fire alarms in the UK alone £1 billion in 2014 [2]. Costs associated with asthma $56 billion in 2011[3]. Carbon Black $17 B/y[4]. 11 Mt/y Soot 1. https://www.grandviewresearch.com/industry-analysis/gas-sensors-market; 2021 [14.03.2021]. 8 Mt/y[5]. 2. Chagger R, Smith D. The causes of false fire alarms in buildings, https://www.bregroup.com/projects-reports/causes-of- false-fire-alarms-in-buildings-bre-trust-briefing-paper/; 2014 [06.04.2021]. 3. Nunes C, Pereira AM, Morais-Almeida M. Asthma costs and social impact. Asthma Research and Practice. 2017;3:1, 4. https://www.grandviewresearch.com/industry-analysis/carbon-black-market; 2021 [14.3.2021]. 5. Bond, T. C.; Doherty, S. J.; Fahey, D., et al. J Geophys Res 2013, 118, 5380 4
Gas Sensors Air Quality: Indoors & Oudoors Food and Agriculture Health and Lifestyle Medical diagnostics, Fitness tracking M. Righettoni, A. Amman, SEP, “Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors”, Mater. Today, 18, 63–171 (2015). 5 A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss, SEP, Breath Sensors for Health Monitoring, ACS Sensors, 4, 268-280 (2019).
Gas Sensors n-type p-type - Sensitivity - Response time 3S - Recovery // - Stability - Selectivity 2R Porous, high surface-area films 1 µm 6 N Bârsan and U Weimar 2003 J. Phys.: Condens. Matter 15 R813
Assembly of Gas Sensors Why use flames? 1. No liquid by-products 2. Unique metastable phases by rapid heating-cooling 3. Few and fast unit operations 4. Transport (e.g. diffusion) is well understood to facilitate design from first principles. 5. Extremely porous but robust films R. Strobel, SEP “Flame aerosol synthesis of smart nanostructured materials”, J. Mater. Chem., 17, 4743 - 4756 (2007). Aerosol-based Technologies in Nanoscale Manufacturing: from Functional Materials to Devices through Core Chemical 7 Engineering, AIChE J., 56, 3028-3035 (2010)
Assembly of Flame-made Gas Sensors R. Strobel, SEP “Flame aerosol synthesis of smart nanostructured materials”, J. Mater. Chem., 17, 4743 - 4756 (2007). C.O. Blattmann, A.T. Güntner, SEP, “In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing 8 Films, ACS Appl. Mater. Interf., 9, 23926-23933 (2017).
Flame-made TiO2 Sensors for CO: direct (FAD) vs. conventional deposition (FWD) Tolmachoff E, Memarzadeh S, Wang H. Nanoporous titania gas sensing films prepared in a premixed stagnation flame. J Phys Chem C. 2011;115:21620-8, 9
Flame-made Gas Sensors 5μ a Lace-like c qualiflower-like 5 µm 5 μm 5 μm S. Kühne, M. Graf, A. Tricoli, F. Mayer, A. Tricoli, M. Graf, F. Mayer, S. Kühne, A. Hierlemann, SEP, “Micropatterning Layers by SEP, A. Hierlemann, J. Micromech. 10 Flame Aerosol Deposition - Annealing”, Adv. Mater., 20, 3005-10 (2008). Microeng. 18, 035040 (2008).
Selective gas sensors made by combustion Acetone2 Ammonia3 Isoprene4 Cr-1 & Si-doped ε-WO3 Si-doped MoO3 Ti-doped ZnO 400 °C 1. L. Wang, A. Teleki, SEP, P.I. Gouma, Chem.Materials, 2008, 20, 4794-6. 2. Righettoni, M.; Tricoli, A.; SEP. Anal. Chem., 82, 3581–3587 (2010) 3. Güntner, A. T.; Righettoni, M.; SEP,. Sens. Actuators B 2016, 223, 266-273. 1111 4. Güntner, A. T.; Pineau, N. J.; Chie, D.; Krumeich, F.;SEP. J. Mater. Chem. B 2016, 4, 5358-5366
Interference by ethanol breath analysis & indoor air quality Methane3 Concentration, ppm 100 Ethanol, disinfectant4 Acetone2 Orders of magnitude H23 Ethanol, 0.38 ‰ 10 higher ethanol concentration! Benzene1 in blood5 1 high selectivity 0.1 required 1. M. Barker, M. Hengst, J. Schmid, H.J. Buers, B. Mittermaier, D. Klemp, R. Koppmann, Eur. Respir. J. 2006, 27, 929–936. 2. Turner, C. Španel, P. Smith, Physiol. Meas. 2006, 27, 321–337. 3. Calloway DJ, Murphy EL, Bauer D, Am. J. Dig. Dis. 1969, 14, 811. 4. Bessonneau, V. Thomas, O. Int. J. Environ. Res. Public Health 2012, 9, 868–879. 5. Vukovic J, Modun D, Markovic D, Sutlovic D, J Subst Abuse Alcohol, 2015, 3 1029.
Filter-enhanced sensor selectivity van den Broek J, Weber IC, Güntner AT, SEP. Mater Horiz. 2021;8:661-84, 13
• • • Commercial powder (1 g) Mesoporous High specific surface area (155 m2/g) Adsorption • Hydrophilic surface Activated Alumina Filter Flame- made Pt:SnO2 van den Broek J, Güntner AT, SEP. ACS Sens. 2018;3:677-683. Isoprene response unchanged Hydrophilic compounds held back Isoprene selectivity >100
Methanol Poisoning from Laced Liquor 14’000 victims and 3’900 fatalities since 2017 worldwide: Mexico (189 deaths, May 2020) and Turkey (50 deaths, Oct. 2020) Oct. 2018 Dec. 2019 Feb. 2019 Toxic coconut wine kills at least 11 people during Christmas celebrations in the Philippines Added to save cost Incorrect distillation Frequent poisoning outbreaks in developing countries with thousands of victims.1 1. Médecins sans Frontiéres, Oslo University Hospital. Suspected methanol poisoning incidents. 2018. (Accessed 15th January 2019).
Design of Gas Sensing Device van den Broek, J., Abegg, S., SEP, Güntner, A. T. Nature Commun.10, 4220 (2019)
Concept of Gas Sensing Device Detection Concept 50% RH 1. Scientific Instrument Services (SIS). Tenax® TA Breakthrough Volume Data. https://www.sisweb.com/index/referenc/tenaxta.htm. Accessed 14th January 2014.
Sensing Device for Methanol Detection Inlet Capillaries Microcontroller Separation column Sample PCB Pump Outlet Sensor chamber S. Abegg, L. Magro, J. van den Broek, SEP, A.T. Güntner, Nature Food, 1, 351–354 (2020)
Detection of Methanol in the presence of Ethanol S. Abegg, L. Magro, J. van den Broek, SEP, A.T. Güntner,, Nature Food, 1, 351–354 (2020)
[2] [1] 1. Fleischer, M., Kornely, S., Weh, T., Frank, J. & Meixner, H.. Sensors and Actuators B-Chem. 69, 205–210 (2000) 20 2. Sahm T, Rong W, Bârsan N, Mädler L, Friedlander SK, Weimar U. J Mater Res. 2007;22:850-7
Our filter concept: Filter and sensor are decoupled for flexible (modular) operation! 21
Flame-made1 Flame-made 1. R. Strobel, W.J. Stark, L. Maedler, SEP, A. Baiker J. Catal., 213, 296-304, (2003). b d Ethanol Ammonia Isoprene CO H2 CO I.C. Weber, H.P. Braun, F. Krumeich, A.T. Güntner, SEP, Adv. Sci., 7, 2001503 (2020).
Catalytic Filter Acetone Sensing @ Exceptional Selectivity (600 – 2000) 99.6 ± 0.5% 99.8 ± 0.3% 90% RH a PTR-ToF-MS c Pt/Al2O3 at 135 °C 23.2 ± 3.1% 1 ppm analyte
Monitoring Lipolysis from Breath Acetone Ongoing: Randomized Clinical trial, 72 volunteers I.C. Weber, N. Derron, K. Königstein, P.A. Gerber, A.T. Güntner, SEP, Monitoring Lipolysis by Sensing Breath Acetone down to ppb, Small Sci. 2100004 (2021)
Noble metal content in SnO2 gas sensors Korotcenkov G, Brinzari V, Boris Y, Ivanov M, Schwank J, Morante J. Thin Solid Films. 2003;436(1):119-126 Fundamentals [2] spill-over” effect (i.e. chemical sensitization) 300 oC, 0% RH, 200 ppm [1] Wet made (precipitation) Pd on SnO2 • optimum at 0.15 mol% Pd Low noble metal concentrations most effective in gas sensing Applications [1] Mädler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, SEP. J Nanopart Res. 2006;8:783-96, [2] Suematsu, K.; Shin, Y.; Hua, Z.Q.; Yoshida, K.; Yuasa, M.; Kida, T.; Shimanoe, K., ACS Appl Mater Inter, 2014, 6:5319-5326 25
Embedded Pd fraction in flame-made Pd/MOx Flame spray pyrolysis [1] Fujiwara, K.; SEP., Appl Catal B-Environ (2018) 26 [2] van Vegten, N.; Maciejewski, M.; Krumeich, F.; Baiker, A., Appl Catal B-Environ (2009)
Experimental 27
Embedded Pd fraction in SnO2 N.J. Pineau, S.D. Keller, A.T. Güntner, SEP, Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors, Microchim. Acta, 187, 96 (2020).
Embedded Pd fraction in flame-made Pd/SnO2 in comparison to Pd/MOx [1] Fujiwara, K.; SEP., Appl Catal B-Environ (2018). [2] van Vegten, N.; Maciejewski, M.; Krumeich, F.; Baiker, A., Appl Catal B-Environ 93 (2009) 38–49 . [3] N.J. Pineau, S.D. Keller, A.T. Güntner, SEP, Microchim. Acta, 187, 96 (2020). 29
Sensing of CO by SnO2 with embedded Pd [2] 2x 7x 90x 350 oC 50% RH Consistent with [1] [1] Suematsu, K.; Shin, Y.; Hua, Z.Q.; Yoshida, K.; Yuasa, M.; Kida, T.; Shimanoe, K., ACS Appl Mater Inter, 2014, 6:5319-5326 [2] N.J. Pineau, S.D. Keller, A.T. Güntner, SEP, Microchim. Acta, 187, 96 (2020).
Conclusions Combustion enables synthesis of new gas sensors Highly-selective devices are made by flame technology. Methanol is quantified in liquor, sanitizers & even human breath in the presence of much more ethanol. Embedded Pd (40 – 65 wt%) in flame-made 2x 7x SnO2 much increases the sensor response 90x (esp. @ 1 – 3 wt% Pd) to CO, acetone and ethanol, most likely by transducing effects.
Thank you for listening! Aletsch Glacier, Fieschalp Riederalp suspension bridge Belalp Switzerland Psalm (102) 103:2 Eὐλόγει, ἡ ψυχή μου, τὸν Κύριον καὶ μὴ ἐπιλανθάνου πάσας τὰς ἀνταποδόσεις αὐτοῦ Bless the Lord, O my soul, and forget not all His benefits 32
You can also read