Flame-made gas sensing devices of high selectivity

Page created by Bobby Phillips
 
CONTINUE READING
Flame-made gas sensing devices of high selectivity
spread the fragrance of knowledge…
            St. Paul's 2nd Letter Corinthians 2:14-15

Flame-made gas sensing devices of high selectivity

                     Sotiris E. Pratsinis
Particle Technology Laboratory, Department of Mechanical &
        Process Engineering, ETH Zurich, Switzerland
                                                              1
             The pdf of this talk is available upon request
Flame-made gas sensing devices of high selectivity
Flame Synthesis of Materials                                                                                 [1]

Fundamentals                                                          Particle
                                                                     structure
                                                                      and size
                                                                    distribution

                                   [2]

                                                                                           π    k
                                                                                    fv =
                                                                                           6
                                                                                             ∑N d
                                                                                               i =1
                                                                                                      i
                                                                                                          2.22
                                                                                                          m ,i   d p0.78

                                                                                     [3]

                                           [4]

   J. Catal., 213, 296-304 (2003)
                                                 to 5 kg/h @ univ. labs
  1.   Kelesidis, Goudeli, SEP, Carbon, 121, 527-535 (2017).
  2.
  3.
  4.
       Kelesidis, SEP, Combustion and Flame, 209, 493-499 (2019)
       Kelesidis, SEP, Proc. Comb. Instit. 38, 1189-​1196 (2021).
       Strobel, SEP, J. Mater. Chem., 17, 4743 - 4756 (2007).
                                                                                   Applications                              2
Flame-made gas sensing devices of high selectivity
Flame Synthesis of Materials
   Fundamentals
                                                  x=1       2     6      10    25   50   75   95   98

                                                                antibacterial nano-silver

              London Stock Exchange
              December 2020, 127 M £
                                                                              Gas Sensing Devices

            J. Catal., 213, 296-304 (2003)
                                                                                Applications
G.A. Sotiriou, SEP, Environ. Sci. Technol., 44, 5649 (2010)
M.J. Height, SEP. EP1846327, 2007                         Catalysis, Batteries, Biomaterials, etc       3
J. van den Broek, I.C. Weber, A.T. Güntner, SEP, Mater. Horiz. 8, 661-684 (2021).
Flame-made gas sensing devices of high selectivity
Gas Sensors $2.3 B/y[1].
                   Much higher impact (like catalysis):
       False fire alarms in the UK alone  £1 billion in 2014 [2].
        Costs associated with asthma  $56 billion in 2011[3].

                                         Carbon Black                                                           $17 B/y[4].
                                                                                                                            11 Mt/y

                                                                                                                              Soot
1. https://www.grandviewresearch.com/industry-analysis/gas-sensors-market; 2021 [14.03.2021].
                                                                                                                             8 Mt/y[5].
2. Chagger R, Smith D. The causes of false fire alarms in buildings, https://www.bregroup.com/projects-reports/causes-of-
false-fire-alarms-in-buildings-bre-trust-briefing-paper/; 2014 [06.04.2021].
3. Nunes C, Pereira AM, Morais-Almeida M. Asthma costs and social impact. Asthma Research and Practice. 2017;3:1,
4. https://www.grandviewresearch.com/industry-analysis/carbon-black-market; 2021 [14.3.2021].
5. Bond, T. C.; Doherty, S. J.; Fahey, D., et al. J Geophys Res 2013, 118, 5380                                                       4
Flame-made gas sensing devices of high selectivity
Gas Sensors
                          Air Quality:
                      Indoors & Oudoors
Food and
Agriculture

                Health and Lifestyle
               Medical diagnostics, Fitness tracking

          M. Righettoni, A. Amman, SEP, “Breath analysis by nanostructured metal
          oxides as chemo-resistive gas sensors”, Mater. Today, 18, 63–171 (2015).
                                                                                5
          A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss,
          SEP, Breath Sensors for Health Monitoring, ACS Sensors, 4, 268-280 (2019).
Flame-made gas sensing devices of high selectivity
Gas Sensors
n-type
                                                    p-type

- Sensitivity                          - Response time

                           3S
                                       - Recovery //
- Stability
- Selectivity                                     2R

Porous, high surface-area films
                                                                    1 µm
                                                                6
 N Bârsan and U Weimar 2003 J. Phys.: Condens. Matter 15 R813
Flame-made gas sensing devices of high selectivity
Assembly of Gas Sensors

                                                                                               Why use flames?
                                                                                         1. No liquid by-products
                                                                                 2. Unique metastable phases by
                                                                                          rapid heating-cooling
                                                                                 3. Few and fast unit operations
                                                                                 4. Transport (e.g. diffusion) is
                                                                                          well understood to
                                                                                          facilitate design from
                                                                                          first principles.
                                                                                 5. Extremely porous but
                                                                                          robust films

R. Strobel, SEP “Flame aerosol synthesis of smart nanostructured materials”, J. Mater. Chem., 17, 4743 - 4756 (2007).
Aerosol-based Technologies in Nanoscale Manufacturing: from Functional Materials to Devices through Core Chemical       7
     Engineering, AIChE J., 56, 3028-3035 (2010)
Flame-made gas sensing devices of high selectivity
Assembly of Flame-made Gas Sensors

R. Strobel, SEP “Flame aerosol synthesis of smart nanostructured materials”, J. Mater. Chem., 17, 4743 - 4756 (2007).
C.O. Blattmann, A.T. Güntner, SEP, “In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing       8
             Films, ACS Appl. Mater. Interf., 9, 23926-23933 (2017).
Flame-made gas sensing devices of high selectivity
Flame-made TiO2 Sensors for CO:
    direct (FAD) vs. conventional deposition (FWD)

Tolmachoff E, Memarzadeh S, Wang H. Nanoporous titania gas sensing films prepared
        in a premixed stagnation flame. J Phys Chem C. 2011;115:21620-8,            9
Flame-made gas sensing devices of high selectivity
Flame-made Gas Sensors

                                           5μ

a         Lace-like                        c          qualiflower-like

 5 µm                                      5 μm
5 μm                                                                                      S. Kühne, M. Graf, A. Tricoli, F. Mayer,
A. Tricoli, M. Graf, F. Mayer, S. Kühne, A. Hierlemann, SEP, “Micropatterning Layers by   SEP, A. Hierlemann, J. Micromech. 10
Flame Aerosol Deposition - Annealing”, Adv. Mater., 20, 3005-10 (2008).                   Microeng. 18, 035040 (2008).
Selective gas sensors made by combustion
                        Acetone2                                               Ammonia3               Isoprene4
                 Cr-1 & Si-doped ε-WO3                                        Si-doped MoO3          Ti-doped ZnO

                           400 °C

1. L. Wang, A. Teleki, SEP, P.I. Gouma, Chem.Materials, 2008, 20, 4794-6.
2. Righettoni, M.; Tricoli, A.; SEP. Anal. Chem., 82, 3581–3587 (2010)
3. Güntner, A. T.; Righettoni, M.; SEP,. Sens. Actuators B 2016, 223, 266-273.                               1111
4. Güntner, A. T.; Pineau, N. J.; Chie, D.; Krumeich, F.;SEP. J. Mater. Chem. B 2016, 4, 5358-5366
Interference by ethanol  breath analysis & indoor air quality

                                                           Methane3
  Concentration, ppm

                       100

                                                                         Ethanol, disinfectant4
                                        Acetone2                                                                     Orders of magnitude

                                                   H23

                                                                                                   Ethanol, 0.38 ‰
                        10                                                                                           higher ethanol
                                                                                                                     concentration!
                             Benzene1

                                                                                                  in blood5
                         1
                                                                                                                      high selectivity
                       0.1
                                                                                                                            required

  1. M. Barker, M. Hengst, J. Schmid, H.J. Buers, B. Mittermaier, D. Klemp, R. Koppmann, Eur. Respir. J.
     2006, 27, 929–936.
  2. Turner, C. Španel, P. Smith, Physiol. Meas. 2006, 27, 321–337.
  3. Calloway DJ, Murphy EL, Bauer D, Am. J. Dig. Dis. 1969, 14, 811.
  4. Bessonneau, V. Thomas, O. Int. J. Environ. Res. Public Health 2012, 9, 868–879.
  5. Vukovic J, Modun D, Markovic D, Sutlovic D, J Subst Abuse Alcohol, 2015, 3 1029.
Filter-enhanced sensor selectivity

van den Broek J, Weber IC, Güntner AT, SEP. Mater Horiz. 2021;8:661-84,
                                                                          13
•
                                     •
                                     •
                                         Commercial powder (1 g)
                                         Mesoporous
                                         High specific surface area (155 m2/g)
                                                                                 Adsorption
                                     •   Hydrophilic surface

                                    Activated Alumina Filter
                                                                                       Flame-
                                                                                       made
                                                                                       Pt:SnO2

van den Broek J, Güntner AT, SEP.
ACS Sens. 2018;3:677-683.

                                     Isoprene response
                                      unchanged

                                      Hydrophilic compounds
                                     held back

                                      Isoprene selectivity >100
Methanol Poisoning from Laced Liquor
         14’000 victims and 3’900 fatalities since 2017 worldwide:
                          Mexico (189 deaths, May 2020) and Turkey (50 deaths, Oct. 2020)

                                                                                                                        Oct. 2018

                                                                                                                                        Dec. 2019
 Feb. 2019                                                                        Toxic coconut wine kills at least
                                                                                  11 people during Christmas
                                                                                  celebrations in the Philippines

     Added to save cost

                                           Incorrect distillation

                                                                                                        Frequent poisoning outbreaks
                                                                                                        in developing countries with
                                                                                                        thousands of victims.1
1.    Médecins sans Frontiéres, Oslo University Hospital. Suspected methanol poisoning incidents. 2018. (Accessed 15th January 2019).
Design of Gas Sensing Device

van den Broek, J., Abegg, S., SEP, Güntner, A. T. Nature Commun.10, 4220 (2019)
Concept of Gas Sensing Device
     Detection Concept
               50% RH

1.   Scientific Instrument Services (SIS). Tenax® TA Breakthrough Volume Data. https://www.sisweb.com/index/referenc/tenaxta.htm. Accessed 14th January
     2014.
Sensing Device for Methanol Detection

                     Inlet
    Capillaries
                                    Microcontroller
                                                                     Separation
                                                                      column
    Sample

                                                              PCB
                                Pump

                                            Outlet

                                                     Sensor
                                                    chamber

S. Abegg, L. Magro, J. van den Broek, SEP, A.T. Güntner, Nature Food, 1, 351–354 (2020)
Detection of Methanol in the presence of Ethanol

S. Abegg, L. Magro, J. van den Broek, SEP, A.T. Güntner,, Nature Food, 1, 351–354 (2020)
[2]
                                   [1]

1. Fleischer, M., Kornely, S., Weh, T., Frank, J. & Meixner, H.. Sensors and Actuators B-Chem. 69, 205–210 (2000)         20
2. Sahm T, Rong W, Bârsan N, Mädler L, Friedlander SK, Weimar U. J Mater Res. 2007;22:850-7
Our filter concept:

 Filter and sensor are decoupled for flexible (modular)
 operation!
                                                          21
Flame-made1 Flame-made

                                                                1. R. Strobel, W.J. Stark, L.
                                                                Maedler, SEP, A. Baiker J.
                                                                Catal., 213, 296-304, (2003).

                                                          b                                     d

                                                                                                     Ethanol

                                                                                                                          Ammonia
                                                                                                               Isoprene
                                                          CO

                                                                                                H2

                                                                                                                                    CO
I.C. Weber, H.P. Braun, F. Krumeich, A.T. Güntner, SEP, Adv. Sci., 7, 2001503 (2020).
Catalytic Filter  Acetone Sensing @
 Exceptional Selectivity (600 – 2000)

                           99.6 ± 0.5%                 99.8 ± 0.3%

                                         90% RH
                       a                 PTR-ToF-MS            c

  Pt/Al2O3 at 135 °C                     23.2 ± 3.1%
  1 ppm analyte
Monitoring
  Lipolysis from
  Breath Acetone

Ongoing:
Randomized Clinical
trial, 72 volunteers

I.C. Weber, N. Derron, K. Königstein, P.A.
Gerber, A.T. Güntner, SEP, Monitoring Lipolysis
by Sensing Breath Acetone down to ppb, Small
Sci. 2100004 (2021)
Noble metal content in SnO2 gas sensors
     Korotcenkov G, Brinzari V, Boris Y, Ivanov M, Schwank J, Morante J. Thin Solid Films. 2003;436(1):119-126

Fundamentals
                                                                                                                   [2]
                            spill-over” effect (i.e.
                            chemical sensitization)

                                                                                      300 oC, 0% RH, 200 ppm
                                                         [1]

                                                                              Wet made (precipitation) Pd
                                                                                      on SnO2
                                                                             • optimum at 0.15 mol% Pd
                                                                                     Low noble metal concentrations
                                                                                     most effective in gas sensing

                                                                                          Applications
[1] Mädler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, SEP. J Nanopart Res. 2006;8:783-96,
[2] Suematsu, K.; Shin, Y.; Hua, Z.Q.; Yoshida, K.; Yuasa, M.; Kida, T.; Shimanoe, K., ACS Appl Mater Inter, 2014, 6:5319-5326
                                                                                                                                 25
Embedded Pd fraction in flame-made Pd/MOx

                                                Flame spray
                                                  pyrolysis

[1] Fujiwara, K.; SEP., Appl Catal B-Environ (2018)
                                                                                             26
[2] van Vegten, N.; Maciejewski, M.; Krumeich, F.; Baiker, A., Appl Catal B-Environ (2009)
Experimental

               27
Embedded Pd fraction in SnO2

N.J. Pineau, S.D. Keller, A.T. Güntner, SEP, Palladium embedded in SnO2 enhances the
sensitivity of flame-made chemoresistive gas sensors, Microchim. Acta, 187, 96 (2020).
Embedded Pd fraction in flame-made Pd/SnO2 in
            comparison to Pd/MOx

[1] Fujiwara, K.; SEP., Appl Catal B-Environ (2018).

[2] van Vegten, N.; Maciejewski, M.; Krumeich, F.; Baiker, A., Appl Catal B-Environ 93 (2009) 38–49 .

[3] N.J. Pineau, S.D. Keller, A.T. Güntner, SEP, Microchim. Acta, 187, 96 (2020).
                                                                                                        29
Sensing of CO by SnO2 with
                              embedded Pd
                                 [2]

                                               2x

                                                                       7x

                                                                                                  90x                   350 oC
                                                                                                                        50% RH

  Consistent
  with [1]

[1] Suematsu, K.; Shin, Y.; Hua, Z.Q.; Yoshida, K.; Yuasa, M.; Kida, T.; Shimanoe, K., ACS Appl Mater Inter, 2014, 6:5319-5326
[2] N.J. Pineau, S.D. Keller, A.T. Güntner, SEP, Microchim. Acta, 187, 96 (2020).
Conclusions
Combustion enables
synthesis of new gas
sensors

                                Highly-selective devices are
                                made by flame technology.

Methanol is quantified in liquor, sanitizers & even
human breath in the presence of much more ethanol.
                   Embedded Pd (40 – 65 wt%) in flame-made
   2x
        7x         SnO2 much increases the sensor response
             90x
                   (esp. @ 1 – 3 wt% Pd) to CO, acetone and
                   ethanol, most likely by transducing effects.
Thank you for listening!

Aletsch Glacier, Fieschalp  Riederalp  suspension bridge  Belalp Switzerland
      Psalm (102) 103:2 Eὐλόγει, ἡ ψυχή μου, τὸν Κύριον καὶ μὴ ἐπιλανθάνου πάσας
                                   τὰς ἀνταποδόσεις αὐτοῦ
                  Bless the Lord, O my soul, and forget not all His benefits        32
You can also read