Der Reaktorunfall von Fukushima - Ursachen, Hintergründe und Konsequenzen - F. Schäfer, P. Tusheva, S. Kliem Institut für Sicherheitsforschung - HZDR
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Der Reaktorunfall von Fukushima Ursachen, Hintergründe und Konsequenzen © TEPCO (Tokyo Electric Power Company) F. Schäfer, P. Tusheva, S. Kliem Institut für Sicherheitsforschung HZDR Kolloquium, 21. November 2011
The Tohoku (Honshu) Earthquake/Tsunami 11th of March 2011 at 14:46 h local time (6:46 h CET) • Initiating event: earthquake magnitude 9.0 (design basis 8.2), epicenter ~150 km (east) from Sendai • Water displacement: ~40 km3 • Maximum height of the tsunami wave: 23 m • Approx. 40-50 min later, several waves up to 14 m high drown the site of Fukushima NPP • Impact: tragedy, destruction of the surroundings (incl. electrical grids) • Approximately 27000 people died and 320000 temporarily evacuated Source: atw 56/2011 Source: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), VGB Power Tech, TEPCO, Japan Nuclear Energy Safety Organization (JNES), Nuclear and Industrial Safety Agency (NISA) Slide 2 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Tohoku (Honshu) Earthquake/Tsunami Earthquake/Tsunami has led to: • Shut-down of nuclear power plants at 4 sites (11 units) and numerous conventional power plants Onagawa • Loss of external power supply and finally total loss of AC power supply at Fukushima Daiichi Fukushima Daini Fukushima I NPP (Station Blackout) • Severe damages at 4 reactor units, Tokai partial core melt, release of radioactivity TEPCO Source: VGB The Fukushima accident and its progression into a severe one was mainly caused by the consequences of the tsunami. Slide 3 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Overview Source: TEPCO Unit 5 Unit 6 Protection wall Cooling water Unit 4 Unit 2 Unit Reactor / Cont. Manufacturer Put into operation Power Unit 3 Unit 1 1 BWR-3 / Mark-I GE 1971 460 MWel 2 BWR-4 / Mark-I Toshiba,GE 1974 784 MWel 3 BWR-4 / Mark-1 Toshiba 1976 784 MWel 4 BWR-4 / Mark-1 Hitachi 1978 784 MWel 5 BWR-4 / Mark-1 Toshiba 1978 784 MWel 6 BWR-5 / Mark-1 Toshiba,GE 1979 1100 MWel Operating by TEPCO Periodic inspection outage (at time of the earthquake) Slide 4 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Background Information Boiling Water Reactor Reactor building Control rods for reactor shut down Turbine Reactor Spent fuel neutron (therm.) storage tank U-235 Generator U-236 Containment Barium Krypton Heat removal A B Condenser system neutrons (fast) Feed water system Source: E.ON Nuclear Fission Heat Turbine Generator Electricity HWZ ca. 30 a In an abnormal transient or accident the reactor will shut down automatically injection of the control rods. But, after shut down the fission products continue to produce heat … Slide 5 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Background Information Decay Heat Removal Containment Reactor building / After reactor shut down the residual thermal turbine hall power (decay heat) has to be removed! Containment Reactor isolation valve Steam Heat source Heat sink Turbine Condenser Fukushima I Units 2-4 - Pel = 784 MW Pth = 2350 MW Relief/safety valve Water Radioactive decay (decay heat) Feedwater or storage tank Turbine Residual heat driven removal pump Pressure suppression ~6 % after shut down, ~2.5 % after 1 hour and continuously decreasing … pool A closed cycle for heat removal and water injection into the reactor pressure vessel is an essential requirement to cool the reactor core! After a Station Blackout only systems powered by batteries or those working on passive principles are available! Slide 6 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Overview Reactor building Reactor service floor Spent fuel storage pool Browns Ferry Nuclear Power Plant, Alabama BWR with 1065 MWel., General Electric (GE) Source: Wikipedia / Tennessee Valley Authority Biological shield (Primary) Containment Wetwell (pressure suppression pool, KOKA) Source: Wikipedia Slide 7 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Components and Safety Systems Slide 8 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Components and Safety Systems Contain- N2 ment Wetwell (KOKA) Slide 9 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Components and Safety Systems Reactor building Spent fuel storage pool Contain- N2 ment Wetwell (KOKA) Slide 10 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Components and Safety Systems Reactor building Spent fuel storage pool Spent fuel storage pool cooling Isolation M Condenser Core cooling systems (active / passive) Contain- N2 ment Wetwell (KOKA) Wetwell cooling and Auxiliary cooling Slide 11 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Components and Safety Systems Reactor building Spent fuel storage pool Spent fuel storage pool cooling Isolation M Condenser Core cooling systems (active / passive) Contain- N2 ment Wetwell (KOKA) Wetwell cooling and Auxiliary cooling G Emergency power supply (Network supply, Emergency diesel generators) Slide 12 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Components and Safety Systems Reactor SCRAM Reactor building Containment-Isolation Turbine trip Spent fuel storage pool Spent fuel storage pool cooling Isolation M Condenser Pressure limitation/ Pressure reduction Core cooling systems (active / passive) Contain- N2 ment Wetwell (KOKA) Wetwell cooling and Auxiliary cooling G Emergency power supply (Network supply, Emergency diesel generators) After SCRAM the emergency core cooling system and the auxiliary cooling system must cool the reactor core! Slide 13 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Fukushima I Nuclear Power Plant Residual Heat Removal / Core Cooling Systems Depressurization (Venting) Condensate Active systems: Turbine driven storage tank Condensation pool pumps (HPCI) • Low pressure injection system (core spray system) • Low pressure coolant Feedwater injection system (LPCIS), special mode of operation for „Isolation Condenser“ Core spray system RHR-system • Residual heat removal (RHR) system N2 Passive systems: Main • High pressure coolant Safety and circulation loop injection system (HPCIS), relief valves pumps powered by steam turbines • Passive heat removal from Boron-injection RHR the core (1 isolation system condenser) on Unit 1 • Reactor core isolation cooling system (RCICS), powered by Pressure suppression pool (PSP) steam turbines PSP cooling system ! Source: Gesellschaft für Anlagen und Reaktorsicherheit (GRS mbH) Slide 14 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Accident After the earthquake Units 1-3 were automatically shut down by the reactor protection system, Units 4-6 were in periodic inspection outage. • Reactor shutdown and turbine trip loss of house load power supply • Loss of external power supply (damage to Reactor electrical grids, shut down of other plants) Steam • Containment isolation Relief/safety valve • Start of the emergency diesel generators Water • Start of the emergency core cooling systems (active + passive*) PSP • Depressurization of the reactor circuit and decay heat removal to the pressure Turbine Residual heat removal driven pump suppression pool + Active emergency core cooling Before the tsunami has drown the site, Fukushima I NPP was in a stable and safe state. * Isolation condenser had been disconnected very early (not the best idea)! Slide 15 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Accident Tsunami waves after ~40-50 min Flooding of the diesel generators / the batteries Flooding of the essential service water building cooling the generators Loss of emergency power supply in Units 1-5 Source: atw 56/2011 Reactor building Consequence of the tsunami: Failure of the diesel generators and Failure of the cooling systems ∼ 40m Turbine building Site level 10 m (13 m Daini) Tsunami 14m Protection wall Venting duct 5.7m (5.2m Daini) See level Cable duct Intake Emergency diesel generator Contaminated water Slide 16 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Accident • Simultaneous occurrence of external hazards and multiple failures of safety systems in neighboring units has lead to: Total loss of power supply and a long-term Station Blackout Reactor • For a limited time core cooling by remaining ‘passive’ systems was available Relief/safety and effective (turbine driven pumps) valve • Failure of the battery supported systems of Units 1-3 (measurement systems, core PSP cooling systems, valves) • Decreasing reactor water level leads to Turbine Residual heat increasing temperatures and later on to driven pump removal + core damage Active emergency core cooling • Emergency measures to feed the reactor and to depressurize the reactor circuit / the containment were not effective or performed with delay Source: www.grs.de Slide 17 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Accident • Core damages of Unit 1-3; release of H2 caused by Zr-water-reaction (the reactor cores of Units 1-3 partly melted in the first three days!) • Pressure reduction and venting to reduce the load to the containment • Hydrogen explosion at the upper part of the reactor building of Unit 1+3, explosion inside of the containment of Unit 2 and explosion at Unit 4 • Injection of borated and unborated (see-) water in the reactor and in the containment; use of mobile pumps, helicopters, water cannon trucks … Source: TV Source: Spiegel Online / AFP/ JIJI PRESS Core, pressure suppression pool and spent fuel cooling, ex-vessel cooling of the reactor pressure vessel Slide 18 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Accident Units 1-3, Main Events Accident sequence following tsunami Unit 1 Unit 2 Unit 3 Loss of AC power + 51 min + 55 min + 52 min Loss of cooling + 1 hour + 71 hours + 36 hours Water level down to top of + 3 hours + 74 hours + 37 hours fuel Core damage starts + 5 hours + 87 hours + 62 hours Fire pumps with fresh water + 15 hours + 42 hours + 24 hours + 87 hours + 68 hours Hydrogen explosion service floor suppression chamber service floor Fire pumps with seawater + 28 hours + 78 hours + 46 hours Off-site electrical supply + 10 days Fresh water cooling + 12-13 days Source: http://world-nuclear.org/info/ Slide 19 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
The Accident Measurements ! ! ! ! Many instruments failed, data could not be downloaded and accessed remotely to assist diagnosis and remedial action. Slide 20 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences Source: TEPCO INES Classification International nuclear and radiological event scale (INES, IAEA) Slide 21 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences Source: TEPCO Slide 22 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences Source: TEPCO Unit 1 from above Unit 1 South direction 9th of September 2011 8th of October 2011 Slide 23 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences Source: TEPCO Unit 3 Unit 3 from above 29th of September 2011 24th of September 2011 Slide 24 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences Radiation in the Environment • Radioactive Cs detected in air samples 20 km beyond from the power plant (09.2011) • I, Cs, Sr in the environment (air, soil, river, drinking water, …) • Soil: Pu-238, Pu-239, Pu-240 • Doses of 12 mSv/h outside (release by explosion, depressurization, fire) • Units 1-4 high values (500 mSv/h) and highly contaminated water • In Germany for personnel: 20 mSv/y (10 µSv/h at 2000 h working hours) Slide 25 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Status of the Fukushima I NPP (17.11.2011) Unit 1 Unit 2 Unit 3 Core Damaged Partially damaged and RPV structural integrity Unknown Unknown leaking PCV structural integrity Damage and leakage suspected Core cooling Cooling with the alternative system created after the tsunami Nitrogen in the PCV gas injection into the PCV RPV bottom temperature 37 °C (below 100 °C) 69 °C (below 100 °C) 69 °C (below 100 °C) Temperature inside the PCV 39 °C 70 °C 59 °C Most spent fuels not Fuel integrity in SFP Unknown Unknown damaged SFP cooling Function recovered Function recovered Function recovered All Units are shut down and safe cooling has been established. Unit 4: - no fuels loaded, no damage - SFP desalination of the pool water, most spent fuels not damaged - SFP cooling: function recovered Slide 26 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Tschernobyl and Fukushima Accidents Compared • No containment • Containment • Graphite moderated and water cooled • Water moderated and water cooled • Uncontrolled power excursion • Hydrogen explosions following a station blackout • Full destruction of the reactor building with loss of emergency core cooling • Release of radio-nuclides, also Sr-90 and • Release of radio-nuclides with one magnitude less Pu-isotopes than Tschernobyl (much less Pu) • Accident was a consequence of design • Insufficient protection against external hazards flaws and human errors Slide 27 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Severe Accident Management Processes, Phenomena • Core heat-up due to decay of fission products • Core material oxidation (by steam) In-vessel phase • At about 900 °C steam-zirconium reaction, hydrogen generation • Cladding failure, fission products release and transport (Cs-137, I-131) • Liquefaction and melting of core materials core degradation loss of core geometry slumping of the molten materials in the RPV lower plenum Ex-vessel phase • Containment: continuous release of H2, CO, CO2 and steam • Hydrogen deflagration/detonation, challenges to the containment Corium Source: TEPCO Source: CORA-Experiments at FZK, GRS Slide 28 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Severe Accident Management Core Status at Fukushima I TEPCO Analysis (23.05.2011): • Bottom RPV temperatures: within 100 °C - 170 °C, stably cooled • Water level top fuel: 3 hours after SCRAM • Water level bottom fuel: 4.5 hours after SCRAM • Pellets melted down to the RPV bottom rather soon after the tsunami Unit 1 • Central part started to melt: 16 hours after SCRAM • Fallen into water in the RPV bottom • Units 2 and 3 analysed cases: fuel also melted to some degree Unit 3 ? Source: TEPCO Slide 29 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Severe Accident Management Possible Countermeasures • Reactor circuit depressurization (manual) • Water injection into the reactor pressure vessel (from feed water system, storage tanks, fire extinguisher system, …) • Flooding of the reactor pressure vessel compartments • Management of combustible gasses like H2 (recombiners, igniters) • Management of containment temperature, pressure and integrity (containment spray and venting systems) Positive und Negative Aspects of Depressurizing the Containment • Removes energy from the reactor building, reduction of the pressure • Release of small amounts of aerosols (I, Cs), hydrogen (flammable) Slide 30 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Severe Accident Management Countermeasures in the Preventive / Mitigative Domain BWR PWR Reactor circuit depressurization Primary side bleed and feed Feeding from pressure suppression pool Secondary side bleed and feed or feed water system/storage tank In-vessel retention by ex-vessel cooling Slide 31 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Severe Accident Management Passive Safety Systems / Concepts Source: AREVA NP Loviisa (Finnland), WWER-440 ice-condenser EPR, Core catcher KERENA, Passive systems are designed to cool the reactor for approx. 3 days without electrictiy Slide 32 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Lessons learned from Fukushima • Consequences of natural hazards were obviously underestimated • Insufficient protection of the emergency power and service water systems • Protection of fuel assembly storage pools insufficient • Safety review for Station Blackout and seismic evaluation needed • Diverse power supply systems, diverse sources for water delivery • Role of passive safety systems, they must work in a real passive manner and without electricity to open valves • Backup systems for reactor parameters monitoring • Revision of Severe Accident Management Guidelines and countermeasures for specific “rare” events • Training Slide 33 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences after the Fukushima Accident Germany and the ‘Energiewende’ Before the Fukushima accident: ‘Atomgesetznovelle’: • 17 NPPs in operation (11 PWR, 6 BWR) • 4 BWR-69 and 4 older PWR have been • Total power: ~ 21.5 GWel shut down • ~23% of the installed power and ~ 48% • In operation: 2 BWR-72 and 7 PWR of 3rd of the base load and 4th generation • ~150 Mio t/y CO2 emission avoided • ~ 8.5 GWel has been lost • Shut down of remaining NPPs till 2022 • ‘Novellierung’ des EEG … Slide 34 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences after the Fukushima Accident Germany and the ‘Energiewende’ • BMU: Reduktion der Treibhausgasemissionen bis zum Jahr 2020 gegenüber 1990 um 40% • EU-2020: 20% erneuerbare Energie, 20% Energieeinsparung, 20% weniger CO2! • BMU: ‘EEG-Gesetz’ Erhöhung des Anteils der Stromerzeugung aus erneuerbaren Energien bis 2020 auf mindestens 35%, bis 2030 auf mindestens 50%, bis 2040 auf mindestens 65% und bis 2050 auf mindestens 80% Bundesnetzagentur, Pressegespräch vom 27. Mai 2011: „Die historisch einmalige zeitgleiche Abschaltung von 5.000 MW Leistung und das längerfristige Fehlen von 8.500 MW Leistung bringen die Netze an den Rand der Belastbarkeit. … Die Übertragungsnetzbetreiber sind daher gezwungen, das Marktergebnis durch gesteigerten Einsatz ihrer Handlungsinstrumente wie Schalthandlungen, gegenläufige Handelsgeschäfte (Countertrading, …, Redispatch) und andere Eingriffe in den Kraftwerkseinsatz (Anweisung zur Blindleistungsbereitstellung, Verschieben von Revisionszeiten, Bereitstellung von Kraftwerken aus der Kaltreserve, Einspeisemanagement der Erneuerbaren Erzeuger) zu korrigieren.“ „Damit wird das eigentlich anzustrebende, wettbewerblich strukturierte Marktergebnis durch einen mehr oder weniger zentral gesteuerten planerischen Ansatz ersetzt. Das ist energiewirtschaftlich zweifelhaft, ökonomisch ineffizient und ökologisch schädlich, …“ „… Ebenso wenig besteht Anlass, von der Mahnung Abstand zu nehmen, vorerst keine weiteren Kraftwerke auf Grund politischer Überlegungen vom Netz zu nehmen bzw. solche Schritte erst nach sorgfältiger Abstimmung mit den Übertragungsnetzbetreibern und der Bundesnetzagentur einzuleiten.“ Slide 35 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences after the Fukushima Accident Germany and the ‘Energiewende’ Speicherkapazität derzeit ~40 GWh (Stromverbrauch Mai 2011 ~1440 GWh ? Source: Bundesnetzagentur Source: Konsequenzen eines Ausstiegs aus der Kernenergie bis 2022 für Deutschland und Bayern, Prognos AG Slide 36 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Consequences after the Fukushima Accident Germany and the ‘Energiewende’ EU-Stresstest … 2012 Slide 37 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
Vielen Dank für Ihre Aufmerksamkeit! Quellen für weitere Informationen: http://fukushima.grs.de/ http://www.vgb.org/tohoku.html http://www.tepco.co.jp/en/nu/fukushima-np/index-e.html http://world-nuclear.org/info/fukushima_accident_inf129.html http://www.jaif.or.jp/english/ http://www.nisa.meti.go.jp/english/index.html http://www.jnes.go.jp/english/index.html http://www.iaea.org/newscenter/focus/fukushima/ Slide 38 F.Schäfer, P. Tusheva, S. Kliem | Institut für Sicherheitsforschung | http://www.hzdr.de
You can also read