Il 5G - La situazione italiana: i nodi da sciogliere - Gianfranco Ciccarella Mail: Quadrato della Radio, October ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Il 5G - La situazione italiana: i nodi da sciogliere Gianfranco Ciccarella Mail: gianfranco.ciccarella@gmail.com Quadrato della Radio, October 19th, 2019
Agenda !5G: requisiti dei servizi applicativi (applicazioni), tecnologie e innovazione !Enhanced Radio Access Network ! virtual/cloud RAN ! riduzione del TCO della RAN ottenuto con virtual/cloud RAN !Edge Cloud Computing e Multi-access Edge Computing ! Architettura ECC e MEC ! Miglioramento delle prestazioni dei servizi applicativi ! Riduzione del TCO della rete dovuta all’architettura ECC !Riduzione del TCO ottenuta con lo sharing di elementi attivi e passivi di rete !Sostenibiltà economica Altri punti importanti: !Conclusioni • Cyber Security per il 5G, ma non solo • Il 5G nuoce alla salute • Difficoltà per ottenere permessi
5G Use Cases and Application Services requirements Latency 5G Innovative Applications have challenging requirements in terms of two main KPIs: Ø Latency Ø Throughput (1) to ensure the Quality of Experience (QoE) levels expected by End Users and by Internet of Thinks (IoT) Video streaming HD (TH=7,2 Mbps) with PL=0,38% à RTT=26 ms 4G services (to day) (1) Note that: TH
Bandwidth utilization ratio in LTE networks Average: TH = 34.6% Radio Bit Rate • Large TCP downlink flows (>5 s, > 1 Mbyte) not concurrent with other flows. • The median ratio is only 19.8% (median gives a better idea of a ‘typical’ value because it is not skewed so much by extremely large or small values) • For 71.3% of large flows, the bandwidth utilization ratios are below 50%. • On average, the utilization ratio is 34.6%. • Transferring the same amount of data requires a longer period of time with lower bandwidth utilization ratio, which incurs additional radio energy overhead and more radio resource consumption à higher TCO and ‘poor’ apps performance Source: J.Huang,F.Qian,Y.Guo ,Y.Zhou,S.Sen,Q.Xu,Z.M.Mao,O.Spatscheck “An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance”; SIGCOMM 2013
Edge Cloud Computing reference Architecture (to be) Remote Server Edge Cloud Computing: • Fixed and mobile IP Edge distribution by ITC GTW NFV for some of the IP Edge functions Centralized • Apps and Content Delivery (vCD) Platforms (vQoE) distribution ‘near’ End CORE IP Edge: EPC, BRAS IP Edge Users L2/L3 Transport Core Node • Virtual RAN based mobile access Metro MicroCloud + EDGE Metro Node vIP Edge+ Apps and contents performance improv. Aggregation vQoE+ Apps Access Node Network cost saving (TCO reduction) Virtual RAN ACCESS and OLT L2/L3 Mobile site MicroCloud + L2 Edge Cloud Computing components vIP Edge + Netw. • Micro Cloud (HW and SW) L2 vQoE+Apps End Users Services • IP Edge functionalities (vEPC, vBRAS) Applic. • Apps and CD platforms (vQoE) L3 Services L3 and L3 are related to the Internet protocols stack
Edge Cloud Computing Interconnections and traffic flows Contents and Why Edge Cloud Computing Cloud/QoE App. Services • Downstream traffic performance improvement enables new IGW Platform Core revenues, new business models (two sides) and UBB IP EDGE POP monetization • Networks TCO savings (in many cases) due to ECC architecture both for RAN and aggregation + metro + core network Why Edge Cloud Computing provided by third parties Telco n-th Telco i-th • Trend: From shared infrastructure to shared active network Metro/ network components. Drivers: cost saving and technical constraints Network Regional POP (constraints are mainly related to 5G RAN) • Incremental cost savings due to shared ECC platform ECC (incremental to the ECC architecture saving) Edge • Higher saving by increasing the peak throughput managed by Computing the ECC Edge Platform (vIP Edge, POP vCD and Apps) Services provided by Edge Cloud Computing (ECC) plat. • IaaS: Telcos distribute and execute Apps and their platforms (vIP Edge, vCD) in third party Micro Cloud (HW and SW) Fixed / Mobile • PaaS: Telco deploy their ECC by third party Micro Cloud (HW Access Net Interconnections and SW) and third party platforms (vIP Edge, vCD). vIP Edge, Contents/apps with ECC Contents and Apps management is fully controlled by the Contents/apps no ECC Telco
Performance improvement by ECC Case Studies modelling PL no ECC = PL with ECC LatencyTerm-CRAN LatencyCRAN-Core LatencyCore-OTT Server Cache Efficiency: 60% Accelerator Accelerator Accelerator Efficiency: 95% Cache Mobile Base CRAN Mob Core Telco OTT Remote Terminal Station Node Node GTW Server Case Latency distribution Cache & Accelerators deployment Speed UP Study A 2,1 Term-CRAN CRAN-Core Core-OTT Server B 35% 25% 40% 2,4 C 2,4 D Term-CRAN CRAN-Core Core-OTT Server 1,8 30% 55% 15% E 2,4 Term-CRAN CRAN-Core Core-OTT Server F 15% 20% 65% 4,5
Mobile network saving with MEC in cRAN TH u [Mbps/act. user] = TH per active user MN Saving% TH qu [Mbps/act. user] = SU* TH u = TH per active user with ECC 10 n [k users] = number of k users = 0,5 [K user] 10 CC [act.user/user] = contemporaneity coefficient = 0,5 TH q [Gbps] = total downstream TH managed by TC TH q [Gbps] = SU*n*cc*TH u [Mbps/active user] 70 % MN Saving%/10 with SU = 3 50 % 5 30 % MN Saving%/10 with SU = 1,2 0 5 10 15 20 25 30 35 TH u [Mbps/act user] - 30 % SU 1,2 6 12 18 24 30 TH qu [Mbps/act user] - 50 % -5 3 15 30 45 60 75 1,2 1,5 3 4,5 6 7,5 TH q [Gbps] 3 3,75 7,5 11,25 15 18,75
Virtualised or Cloud RAN HSBC cautious projections: Ø Capex saving 29% Ø Opex saving 25% Ø TCO saving 26% over 5 years RRH: Remote Radio Head DU: Distributed Unit CU: Central Unit MME: Mobility Man. Entity SGW: Serving GW PGW: Packet GW 1–10 Km 40–80 Km 200 Km Source: HSBC Global Research Diversified Telecom: “5G and the cloud. Will it change your life?”, September 2019
Impact of infrastructure sharing on CAPEX RELEVANT SCENARIOS FOR 5G ROLLOUT IN THE UK
Saving obtained by network sharing without Edge Cloud Computing PLNM: Public Land Mobile Network Source: NEC Europe Ltd Germany, K. Samdanis, X. Costa-Perez, V. Sciancalepore “The 5G Network Slice Broker From Network Sharing to Multi-tenancy”
European Telecom sector: issues on sustainability 31 January 2019 Figure 5: European telecoms – just over 4% CFROI Source: Credit Suisse HOLT Spectrum is key Cash Flow Return On Investment (CFROI) for the European telecoms sector At the conference there was a much clearer view around spectrum that allocating and bringing live spectrum is absolute key. is currently just over 4%, highlighting the issues the sector has to generate a The 3.5GHz band is going to be the prime 5G spectrum band (not a huge surprise) as it return offers on both investment capacity and relatively strong coverage characteristics (vs mmWave). Figure 6: Mid-band (eg 3.5GHz) provide balance between capacity and coverage Source: Credit Suisse, European Telecoms Equity Research: “Getting out of the rut”, 17 April 2019 Credit Suisse, European Telecoms Equity Research: “5G – more than just next G ?”, January 31st 2019
Conclusions: takeaways and open issues
Thanks for your time!
Back Up
“Traditional” reference architecture (as is) Remote Server Application ‘Traditional’ architecture: Services • L2 transport from End User to Core L3 Transport ITC GTW • Fixed and mobile IP Edge in the Core Centralized CORE IP Edge: EPC, BRAS IP Edge • Performance improvement based on Core Node QoS (priority and bw reservation) • L3 transport from Core to Remote Server Metro EDGE Metro Node • Virtual RAN in mobile access L2 Transport Aggregation Virtual RAN and OLT Access Node Apps performance limited by RTT and PL, if Bit Rate is not the bottleneck ACCESS Mobile site Netw. ‘High’ Network cost and Services Time To Market L2 End Users Services devices Applic. L3 Services L3 and L3 are related to the Internet protocols stack
Virtualised or Cloud RAN capex and opex MEC cost MEC cost HSBC cautious projections: • Capex saving 29% • Opex saving 25% • TCO saving 26% over 5 years Source: HSBC Global Research Diversified Telecom: “5G and the cloud. Will it change your life?”, September 2019
Criticità del 5G oggi July 18, 2019 South Koreans complain at poor quality of 5G network Qualità dei servizi applicativi Asian country has 77% of world’s 5G users but service is patchy § Accesso radio 5G ("new radio”), ma ▪ La banda base disponibile, anche dopo le gare per la banda 5G, non consente un bit rate radio di 10 Gbps per un settore (con un’efficienza spettrale molto alta - 25 bit/s/Hz - servirebbero 400 MHz di banda base) ▪ l’efficienza spettrale è “bassa” (massive MIMO e beam forming non sono ancora pronti) ▪ Conclusione: il bit rate in accesso è pari a circa 1-2 Gbps per un settore ▪ Il 5G stand alone non è ancora disponibile (si utilizza la rete 4G a monte dell’accesso radio e nel core) ▪ Gli indicatori che determinano la qualità dei servizi applicativi (la velocità dell’accesso a Internet) sono quelli del 4G. Il bit rate dell’accesso radio è più alto di quello del 4G, ma questo non migliora, in modo significativo, le prestazioni ▪ Conclusione: ▪ la qualità dei servizi su rete 5G è in pratica ‘uguale’ a quella della rete 4G, poiché dipende da indicatori di prestazioni "end to end” (KPI). I KPI sono: ▪ Throughput, RTT, Download Time e Video Delay ▪ l’architettura ECC (o MEC) consente di migliorare le prestazioni delle applicazioni
Criticità del 5G oggi Sostenibilità economica § Costo della banda base: prezzo di assegnazione della banda a 3,6 GHz in Italia è stato, fino ad oggi, il più alto in Europa (prezzo medio: 36 centesimi di Euro/POP/MHz) § Saving ottenuti con § Virtual/Cloud RAN § l’architettura Edge Cloud Computing (o Multi-access Edge Computing) § Sharing di infrastrutture passive e attive di rete § Ricavi incrementali abilitati da ECC Monetizzazione § I Telco considerano il Bit Rate in accesso come il principale indicatore di qualità e presentano la rete 5G come più veloce, cioè in grado di migliorare le prestazioni dei servizi applicativi. Oggi questo non è in generale vero e quindi ha un impatto negativo sui ricavi dei Telco § Per monetizzare le reti mobili UBB (4G e 5G) i Telco dovrebbero inserire piattaforme Edge Cloud Computing in alcuni dei punti di aggregazione delle stazioni radio base delle reti mobili 4G e 5G. Questo migliora le prestazioni dei servizi applicativi e, in molti casi, riduce i costi di rete
Criticità del 5G oggi Consensus on Multi-access Edge Computing: (1) HSBC: 5G will gain scale in 2020, but some operators are better positioned than others. 5G services in 2020 will be based on Release 16 – the ‘full’ 5G standard. This will enable services that are substantially different – but operators with a 5G core network and Mobile Edge Compute (MEC) capabilities will have an advantage (2) ETSI: "Multi-access Edge Computing is regarded as a key technology to bring application-oriented capabilities into the heart of a carrier’s network, in order to explore a wide range of new use cases, especially those with low latency requirements. When it comes to deploying MEC, there are many potential scenarios where MEC can fit in, and – as the name clearly spells out – these are not limited to 4G or 5G at all! As a universal access technology, MEC offers itself to any application that has locality requirements like a shopping mall or a sports arena, or wherever low latency is required”. Sources: (1) HSBC Global Research Diversified Telecom: “5G and the cloud. Will it change your life?”, September 2019 (2) ETSI: White Paper No. 24, MEC Deployments in 4G and Evolution Towards 5G. First edition, February 2018
Application Services key performance indicators (1) Application throughput Download Time n Application throughput (TH) measures the ‘speed’ of the n Download Time (DT, s) is a performance parameter application (Mbit/s). linked to end users requests response time (such as web server’s response time) n Bit rate (BR) measures the ‘speed’ of the communication channel (Mbit/s) n It depends on: the packets exchanged between the End User and the application server in the first phase of the n It is limited by BR: TH =< BR. If BR is not the bottleneck, it ‘connection’ and the throughput depends on: round trip time (RTT) and packet loss (PL). The increase of RTT and PL reduces the TH. In UBB networks throughput is lower than Download time in the order of 1-1,5 s is bit rate (in many cases much lower!) required Ø Application throughput and download time are the main drivers Ø to enable new services (such as 4K VoD streaming and augmented/virtual reality) Ø to improve/provide technical QoE for application services PL is the number of packets lost in the path source-destination-source due to transmission errors and router’s queues
Application Services key performance indicators (2) Round Trip Time Video Delay n Round Trip Time (RTT [ms]) is the time a packet requires n Video Delay (D [s]) is the amount of time between the to go from the source to the destination and to go back instant a frame is captured and the instant that frame is to the source displayed at the end user device. It is a KPI for live streaming services n It depends on the network load (increases with the network load, i.e. packets/s managed by the network) n Video Delay can be reduced if the TH jitter (TH values fluctuations) is reduced. When the TH has a ‘small’ n Very low RTT values are needed for real time verticals jitter the number of seconds of the video buffer needed to compensate the jitter can be reduced RTT values in the range 1-5 ms are needed Video Delay to day is about 30-40 s and the for real time verticals such as autonomous required value is about 4-6 s driving Ø Round Trip Time and Video Delay are the main drivers Ø to enable real time services (RTT) or near real time services (RTT and D) Ø to improve/provide technical QoE for live streaming services (D)
Contents and Apps closer to End Users… à impact on network architecture (1/2) 4G Mobile Network Architecture ‘As Is’ (Physical) (Apps, QoE platf.)
Contents and Apps closer to End Users… à impact on network architecture (2/2) Mobile Architecture ‘To-Be’: virtual RAN, Distribution of EPC, Apps and CD Platforms (Physical, vQoE) (vEPC, Apps, QoE platf.) V-EPC V-EPC V/C RAN
Saving by ECC platforms Saving evaluation The cost saving is evaluated making reference to a defined IP network with its topology, technologies and network segments unitary costs (Access, Aggregation, Metro and Core), by the following equation Network Cost (no ECC; TH=TH q) – Network Cost (ECC; TH q) Saving = Network Cost (no ECC; TH=TH q) Where: • Network Cost (no ECC; TH = TH q) is the traditional IP Network architecture cost (i.e. centralized IP Edge and no ECC platforms). The total peak throughput of the traditional network (TH) is equal to the total peak throughput of the network with ECC platforms (THq), because network cost depends on TH q • Network Cost (ECC; TH = TH q) is the Edge Cloud Computing network architecture cost (i.e. network with distributed ECC platforms). The ECC network cost components are: the cost of the network segments (that may be lower than the costs of the network segments without ECC) and the costs of the ECC platform
LTE User Plane Protocol Stack from UE to EPC Protocol stack between UE and eNodeB • PDCP (Packet Data Convergence Protocol) IP L3 is ‘visible’ only • RLC (Radio Link Control) after P-GW • MAC (Medium Access Control) Packets in the core network (EPC) are encapsulated and tunneled between the P-GW and the eNodeB (GTP: GPRS Tunnelling Protocol)
LTE Control Plane Protocol Stack from UE to MME RRC: Radio Resource Control layer is responsible for configuring the lower layers. The Control Plane handles radio-specific functionality which depends on the state of the user equipment which includes two states: idle or connected. NAS: Non-Access Stratum is a set of Protocols used to convey non radio signaling between user equipment and MME (Mobility Management Entity) for LTE/E-UTRAN access. NAS procedures are grouped in two categories: EMM (Evoved Mobility Management) and ESM (Evolved Session Management). SCTP: Stream Control Transmission Protocol. It is a layer 4 protocol designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks, but is capable of broader applications.
Criticità delle reti UBB VANTAGGI TECNOLOGICI DEL 5G • Velocità di trasferimento dei dati fino a 100 volte maggiore • Sensibile riduzione della latenza che la avvicina allo zero • Possibilità di gestire fino ad un milione di dispositivi per km2 • Maggiore longevità delle batterie dei dispositivi • Flessibilità e indipendenza di Criticità accesso July 18, 2019 South Koreans complain at poor quality of 5G network Asian country has 77% of world’s 5G users but service is patchy ICOM: Lo sviluppo del 5G in Italia tra competitività e sicurezza nazionale, Roma, Camera dei deputati, 25 settembre 2019
Criticità e driver per la trasformazione IL 5G IN ITALIA dei servizi applicativi e delle reti UBB dei Telco Principali criticità Come ridurre/eliminare per i Telco Nel DESI 2019 l’Italia è tra i Paesi UE Telco OTT 5G readiness dei Paesi europei le criticità → 24a per digitalizzazione dell’economia e della società 70% Time to market → 2a per lo stato di avanzamento del 5G. 60% 1 +++ + Separazione 50% (TTM) FATTORI DI SVILUPPO 40% 30% tra servizi ✓ Città per le sperimentazioni 5G (bando 5 città in 5G, 20% applicativi individuate già nel 2017 Milano, Prato, L’Aquila, Bari e Matera) e 2 Total Cost of 10% ++++ ✓ Altre sperimentazioni sulla base di accordi Ownership (TCO) volontari tra gli 0% + servizi di Architettura operatori e i comuni a Roma, Torino, Napoli e Genova. rete ECC (o MEC) ✓ Spettro armonizzato a livello UE per la bb mobile assegnato al 94% n Da migliorare n Limiti sulle prestazioni dovuti Distribuzione Prestazioni dei → bande 3,6 GHz, 26 GHz en700Basata MHz chesu QoS messa a disposizione entro luglio 2022 (da e di livello 2 però (trasporto verrà 3)il valore qui alle reti dei Telco di Basata n Fonte: suCommission, distribuzione di CD (giugno 2019) Serv. Applicativi European Digital Scoreboard che indica l’Italia pronta al 60%, che la posiziona platforms (piattaforme IP di • IP Edge comunque seconda in Europa). ▪ livello 4) di il prezzo e di App assegnazione della banda 3,6 GHz • èContent in Italia risultato fino n Monetizzazione legata al n Non importante Delivery ad ora il più alto in Europa= in media 36 centesimi di EUR/pop/MHz. Monetizzazione miglioramento delle ▪ assegnazione record per l’erario, ma allo stesso tempo Platforms una spesa prestazioni delle applicazioni UBB partecipazione all’asta + investimenti per il roll-out•delleApps ingente per gli operatori (remunerazione investimenti per la Importante non perdere questo vantaggio reti). → importante garantire la rapidità nelle procedure amministrative Source: ICOM, Lo sviluppo del 5G in Italia tra competitività e sicurezza relative ai permessi per l’implementazione delle reti 5G, in modo che nazionale, Roma, Camera dei deputati, 25 settembre 2019 questa sia efficace, veloce e sostenibile (oltre che sicura).
Virtualised or Cloud RAN opex MEC cost MEC cost Source: HSBC Global Research Diversified Telecom: “5G and the cloud. Will it change your life?”, September 2019
You can also read