Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Underground Radiolab LAboratoire de mesure des FAibles RAdioactivités Tunnel EDF of Ferrières-sur-Ariège - Establishment of the University of Toulouse Pieter van Beek, Marc Souhaut, Thomas Zambardi
- LAFARA : created in 2007 - Tunnel EDF of Ferrières (100 km from Toulouse) - 85 m thick rock cover (natural shield protecting against cosmic rays) - 5 last-gen gamma spectrometers - The lab is fully remotely controlled from Toulouse - Member of European CELLAR network, National network Becquerel and Regional PANGEE OMP Platform
French Authority of Nuclear Safety Quality managment system certifications International normative reference ISO/CEI-17025 TYPE MATRIX CATEGORY REF. VALIDITY 1 Water Radium-226 & daughters 1_11 31/12/2024 1 Water Radium-228 & daughters 1_12 31/12/2024 1 Water Weight uranium 1_17 31/12/2024 2 Soils Gamma emitters > 100 keV 2_01 30/06/2026 2 Soils Gamma emitters < 100 keV 2_02 30/06/2026 2 Soils Radium-226 & daughters 2_11 30/06/2025 2 Soils Radium-228 & daughters 2_12 30/06/2025 LAFARA certified by ASN 2 Soils Weight uranium 2_17 30/06/2025 (French Authority of Nuclear Safety) 5 Gas Gamma emitters > 100 keV 5_01 30/06/2022 (R) 5 Gas Gamma emitters < 100 keV 5_02 30/06/2022 (R) 5 Gas Gazeous halogens 5_14 30/06/2022 (R) 3 Biological Radium-226 & daughters 3_11 WIP 3 Biological Radium-228 & daughters 3_12 WIP 3 Biological Weight uranium 3_17 WIP
Radiolab Analysis of radioactivity in all types of materials by gamma spectrometry Expertise in Environmental studies
Fields of application Academic research Earth sciences, Oceanography, Cosmochemistry... Medical Zr –Al ceramic prostheses, nuclear medicine Building Building materials, paints Cosmetics Minerals Environment Soils, water, air Food industry food Aeronautics & space Embedded materials & recycling Fraud control Origin of products (wood, mushrooms); age (spirits), Luxury (counterfeit) Nuclear instruments Material selection & optimization
238U Series 232Th Series 235U Series 238U 232Th 235U 4.5 109 a 1.4 1010 a 7.04 108 a 234Th 228Ra 231Pa 24.1 d 5.75 a 32500 a 234U 228Th 227Ac 2.5 105 a 1.91 a 21.8 a 230Th 224Ra 227Th 75200 a 3.66 d 18.7 d 226Ra 208Pb 223Ra 1602 a 11.4 d 222Rn 207Pb 3.83 d Naturals radioactives series 238U, 232Th, 235U 210Pb 22.3 a 210Po 138 d + cosmonuclides (14C etc…) + artificial radioelements (I-131, Am-241, Cs-137…) 206Pb
Geoscience applications : Studies of Oceanography - Climat - Hydrology Ocean circulation Radium-226 Le Roy et al., 2018 ANR GEOVIDE (2014-18, PI: G Sarthou, P. Lherminier)
Geoscience applications : Studies of Oceanography - Climat - Hydrology Ocean circulation Submarine Groundwater Discharge Radium-226 Radium-228 228Ra (dpm 100L-1) Le Roy et al., 2018 ANR MED-SGD (2016-21, PI: P. van Beek) ANR GEOVIDE = Source of pollutants (2014-18, PI: G Sarthou, P. Lherminier)
Datation of soils Tchernobyl accident = 1986 Atmospheric nuclear tests Thiebault et al., 2017 = 1963 Thiebault et al., 2017 LEGOS, GET, ECOLAB, GEODE, CEFREM, MIO, BRGM, ENS Lyon, Univ. Leeds
Datation des sédiments Environmental monitoring Detection of the “radioactive cloud” of Fukushima at the top of the Pic du Midi in 2011 I-131, Cs-137, Cs-134 Tchernobyl accident = 1986 Atmospheric nuclear tests Thiebault et al., 2017 = 1963 Thiebault et al., 2017 LEGOS, GET, ECOLAB, GEODE, CEFREM, MIO, BRGM, ENS Lyon, Univ. Leeds Perspective : Barrages EDF
Equipments 5 last-gen gamma spectrometers Ultra-sensitive HPGe detectors 3 well-type SAGe-Well® 2 planar-type Cooling by electric cryo-generators CryoPulse-5®+ (no liquid nitrogen required) Robotic automated sampler Lead Casltes VLA of 24 cm and underground environment Reduction of cosmic radiation Reduction of background noise Great analytical capacity Remote management (piloting and monitoring)
Instruments of theLAFARA 5 low background gamma detectors - 3 SAGe-Well type (Canberra-Mirion Lingolsheim) : 2 units Ø21 mm & 1 unit Ø32 mm - 2 planar-type (1 coaxial Canberra-Mirion Lingolsheim et 1 Semi-Planar ORTEC-AMETEK) - Since 2017, all LAFARA detectors are electrically cooled (no more nitrogen) LAFARA detector model (here Latest generation LYNX (Canberra-Mirion) well type) with electric cooling analog electronics in network, CP5-CO and BIP-E cryogenerator controller for management in autosampler mode.
Background noise from LAFARA Lead Castle around the EDF tunnel entrance (Ferrières- detectors sur-Ariège - 100 km from Toulouse) LAFARA 2017 0,016 counts s-1 kg-1 (85 m of rock/ 200 m water equivalent)
Reminder on interactions with matter
Detector calibration A/ Energy calibration = Relationship between channels and peak energy Determine the Canal-Energy correspondence Number of channels selection (4000, 8000 or 16000) Energy is linearly related to the channels (y=ax+b) Energy range selection Number of channels selection Trade-off between peak analysis and peak detection Peak analysis Correct peak adjustment requires a certain number of channels per peak. The more channels per peak, the better the fit will be. Peak detection APEX gamma software keV-Channel An ideal case would be having the whole counts in one relationship (MIRION-CANBERRA) channel. The less (channel) = the best (detection)
Detector calibration A/ Energy calibration = Relationship between channels and peak energy Allows the identification of peaks counts Element Periode Energie Emission keV % 1600 214Pb 228Ac 352 keV 1400 338.4 keV Pb-210 22.26 a 46,5 4,05 Am-241 432,2 59,54 35,9 1200 Th234 24.1 d 63,29 3,812 Th234 24.1 d 92,38 5,58 Th234 24.1 d 92,8 1000 212Pb 214Pb U235 7.038E+8 a 143,764 10,96 238.6 keV 295.2 keV U236 7.038E+8 a 163,36 5,08 800 => 224Ra, 228Th U237 7.038E+8 a 205,31 5,01 Ra-226 1602 a 186,21 3,59 600 U235 7.038E+8 a 185,71 57,2 226Ra Pb-212 10.643 h 238,63 44,646 400 185.9 keV 214Pb 241.9 keV Ra-223 11.434 d 269,43 13,6 200 Pb-214 26.8 min. 295,21 19,247 0 100,0 150,0 200,0 250,0 300,0 350,0 400,0 keV Energy calibration is used to define the final position of the peaks in the 223Ra + 228Ac : 270.3 keV spectrum (Gain and Offset) + 219Rn : 271.2 keV 269.6 keV
Detector calibration B/ Performance calibration : use of a standard source (IAEA or LEA) Absolute return If the reference is the number of radiations emitted by the source { Nd EffAbs = avec Nd Number of hits observed in the detector per sec. N is Ni Nb of shots emitted per sec by the source The absolute return depends on: geometry (distance, container, etc.) the intrinsic efficiency of the detector for a given energy The "geometry" is defined by: the distance between the source and the sample the shape of the sample (spatial distribution) the density of the sample (self-absorption)
Detector calibration B/ Performance calibration = Detection efficiency is a function of energy Element Periode Energie Emission keV % % émission Pb-210 22.26 a 46,5 4,05 Am-241 432,2 59,54 35,9 Detector efficiency Th234 24.1 d 63,29 3,812 Reyss et al., 1995 Th234 24.1 d 92,38 5,58 Th234 24.1 d 92,8 U235 7.038E+8 a 143,764 10,96 U236 7.038E+8 a 163,36 5,08 U237 7.038E+8 a 205,31 5,01 Ra-226 1602 a 186,21 3,59 U235 7.038E+8 a 185,71 57,2 Pb-212 10.643 h 238,63 44,646 Ra-223 11.434 d 269,43 13,6 Pb-214 26.8 min. 295,21 19,247 The efficiency of the detector varies as a The efficiency of the detector function of the energy varies as a function of the size germanium crystal
Detector calibration boxes B/ Detector efficiency 12cc 61cc - Analysis of standards in the same geometry 3cc - Relationship: number of pulses detected activity 1cc 214Pb Sample geometry for planar type detector 352 keV 214Pb 295.2 keV Nb of counts at 295.2 keV: 214Pb 241.9 keV X counts 4980 Bq kg-1 x Y kg analysed Relationship to apply for samples: Example : RGU1 standard Number of hits detected => Activity (4980 Bq kg-1)
Correction of continuum and background noise 269.6 keV 1000 Continuum Counts Continuum 100 (right) (left) 10 262 270 278 Energy (keV) - Correction of continuum : Raw Peak - (continuum right + continuum left) / 2 = Net Peak - Correction of background noise: Number of counts without sample (cpm) (to be subtracted from the net peak) + Detection efficiency => quantification of activity in Bq or dpm (per kg or per L of sample)
Use of 210Pb deposited in the sediment to estimate sedimentation rates Ocean 226Ra 210Pb 210Pb = excess Retiré de 210Pb – (210Pb-226Ra) son père total supported Sediment 226Ra 210Pb 210Pb 210Pb (Bq kg-1) Ln (210Pb) 0 0 10 10 Exponential fit Exponential fit Depth (cm) Depth (cm) 20 A = A0 e-λt 20 ln A = -λt + ln A0 with t = z / S : m : slope ln A = -λz / S + ln A0 30 30 m = λ/ S S = λ/ m with λ = ln 2 / T 1/2 S usually in cm y-1 or mm y-1
Thiebault et al., Anthopocene, 2017
Practical work: Study of a sample of marine sediment core off New Zealand - Visit of the LAFARA platform website - Remote connection with LAFARA instruments - Presentation of the APEX-gamma software (Mirion-Canberra) - Energy calibration: identification of peaks - Efficiency calibration: quantification of activities - Analysis of gamma spectra of core samples - Determine the activity in excess 210Pb - Determine a sedimentation rate - Comment
You can also read