Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités

Page created by Herman Tran
 
CONTINUE READING
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Underground Radiolab

             LAboratoire de mesure des FAibles RAdioactivités
Tunnel EDF of Ferrières-sur-Ariège - Establishment of the University of Toulouse

             Pieter van Beek, Marc Souhaut, Thomas Zambardi
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
- LAFARA : created in 2007

- Tunnel EDF of Ferrières (100 km from Toulouse)

- 85 m thick rock cover
(natural shield protecting against cosmic rays)

- 5 last-gen gamma spectrometers

- The lab is fully remotely controlled from
Toulouse

- Member of European CELLAR network,
National network Becquerel and Regional
 PANGEE OMP Platform
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
French Authority of Nuclear Safety
Quality managment system                               certifications
  International normative reference
  ISO/CEI-17025
                                             TYPE           MATRIX             CATEGORY          REF.      VALIDITY

                                         1          Water            Radium-226 & daughters     1_11    31/12/2024

                                         1          Water            Radium-228 & daughters     1_12    31/12/2024

                                         1          Water            Weight uranium             1_17    31/12/2024
                                         2          Soils            Gamma emitters > 100 keV   2_01    30/06/2026

                                         2          Soils            Gamma emitters < 100 keV   2_02    30/06/2026

                                         2          Soils            Radium-226 & daughters     2_11    30/06/2025

                                         2          Soils            Radium-228 & daughters     2_12    30/06/2025
     LAFARA certified by ASN
                                         2          Soils            Weight uranium             2_17    30/06/2025
  (French Authority of Nuclear Safety)   5          Gas              Gamma emitters > 100 keV   5_01    30/06/2022 (R)
                                         5          Gas              Gamma emitters < 100 keV   5_02    30/06/2022 (R)
                                         5          Gas              Gazeous halogens           5_14    30/06/2022 (R)

                                         3          Biological       Radium-226 & daughters     3_11    WIP

                                         3          Biological       Radium-228 & daughters     3_12    WIP
                                         3          Biological       Weight uranium             3_17    WIP
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Radiolab
 Analysis of radioactivity in all types
of materials by gamma spectrometry

 Expertise in Environmental studies
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Fields of application

 Academic research    Earth sciences, Oceanography, Cosmochemistry...
           Medical    Zr –Al ceramic prostheses, nuclear medicine
           Building   Building materials, paints
         Cosmetics    Minerals
       Environment    Soils, water, air
      Food industry   food
Aeronautics & space   Embedded materials & recycling
      Fraud control   Origin of products (wood, mushrooms);
                      age (spirits), Luxury (counterfeit)
Nuclear instruments   Material selection & optimization
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
238U   Series                232Th   Series                     235U   Series

   238U                         232Th                              235U

           4.5 109 a                     1.4 1010 a                             7.04 108 a
  234Th                         228Ra                             231Pa

           24.1 d                        5.75 a                                 32500 a
   234U                         228Th                             227Ac

           2.5 105 a                     1.91 a                                 21.8 a
  230Th                         224Ra                             227Th

           75200 a                       3.66 d                                 18.7 d
  226Ra                         208Pb                             223Ra

           1602 a                                                               11.4 d
  222Rn                                                           207Pb

           3.83 d      Naturals radioactives series
                              238U, 232Th, 235U
  210Pb

           22.3 a
  210Po

           138 d                 + cosmonuclides (14C etc…)
                                 + artificial radioelements (I-131, Am-241, Cs-137…)
  206Pb
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Geoscience applications :
Studies of Oceanography - Climat - Hydrology

  Ocean circulation
                                                  Radium-226

                                            Le Roy et al., 2018

  ANR GEOVIDE
  (2014-18, PI: G Sarthou, P. Lherminier)
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Geoscience applications :
Studies of Oceanography - Climat - Hydrology

  Ocean circulation                                               Submarine Groundwater Discharge
                                                  Radium-226
                                                                                          Radium-228
                                                                        228Ra

                                                                        (dpm 100L-1)

                                            Le Roy et al., 2018

                                                                                           ANR MED-SGD
                                                                                (2016-21, PI: P. van Beek)

  ANR GEOVIDE                                                                            = Source of pollutants
  (2014-18, PI: G Sarthou, P. Lherminier)
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Datation of soils

                                 Tchernobyl accident
                                 = 1986

                                 Atmospheric nuclear tests
       Thiebault et al., 2017    = 1963
        Thiebault et al., 2017

               LEGOS, GET, ECOLAB, GEODE, CEFREM,
               MIO, BRGM, ENS Lyon, Univ. Leeds
Underground Radiolab - Pieter van Beek, Marc Souhaut, Thomas Zambardi LAboratoire de mesure des FAibles RAdioactivités
Datation des sédiments                    Environmental monitoring
                                               Detection of the “radioactive cloud” of
                                                Fukushima at the top of the Pic du Midi in 2011
                                                I-131, Cs-137, Cs-134

                                Tchernobyl accident
                                = 1986

                                Atmospheric nuclear tests
      Thiebault et al., 2017    = 1963
       Thiebault et al., 2017

                 LEGOS, GET, ECOLAB, GEODE, CEFREM,
                 MIO, BRGM, ENS Lyon, Univ. Leeds
                 Perspective : Barrages EDF
Equipments
  5 last-gen gamma spectrometers
Ultra-sensitive HPGe detectors
         3 well-type SAGe-Well®
         2 planar-type

   Cooling by electric cryo-generators
    CryoPulse-5®+ (no liquid nitrogen required)

   Robotic automated sampler

   Lead Casltes VLA of 24 cm and underground
    environment
          Reduction of cosmic radiation
          Reduction of background noise

   Great analytical capacity

   Remote management (piloting and
    monitoring)
Instruments of theLAFARA
 5 low background gamma detectors
- 3 SAGe-Well type (Canberra-Mirion Lingolsheim) : 2 units Ø21 mm & 1 unit Ø32 mm
- 2 planar-type (1 coaxial Canberra-Mirion Lingolsheim et 1 Semi-Planar ORTEC-AMETEK)
- Since 2017, all LAFARA detectors are electrically cooled (no more nitrogen)

             LAFARA detector model (here               Latest generation LYNX (Canberra-Mirion)
             well type) with electric cooling           analog electronics in network, CP5-CO
                                                         and BIP-E cryogenerator controller for
                                                         management in autosampler mode.
Background noise
                                    from LAFARA

                                                                           Lead Castle around the
EDF tunnel entrance (Ferrières-                                                  detectors
   sur-Ariège - 100 km from
           Toulouse)

                                                    LAFARA 2017
                                                   0,016 counts s-1 kg-1

                                  (85 m of rock/ 200 m water equivalent)
Reminder on interactions with matter
Detector calibration
                 A/ Energy calibration = Relationship between channels and peak energy

   Determine the Canal-Energy correspondence
        Number of channels selection (4000, 8000 or 16000)          Energy is linearly related to the channels
                                                                                      (y=ax+b)
        Energy range selection
   Number of channels selection
        Trade-off between peak analysis and peak detection
   Peak analysis
        Correct peak adjustment requires a certain number of
         channels per peak. The more channels per peak, the better
         the fit will be.
   Peak detection
                                                                       APEX gamma software keV-Channel
        An ideal case would be having the whole counts in one
                                                                        relationship (MIRION-CANBERRA)
         channel. The less (channel) = the best (detection)
Detector calibration
            A/ Energy calibration = Relationship between channels and peak energy
                                 Allows the identification of peaks
                                              counts
Element      Periode     Energie   Emission
                           keV        %       1600                                                                                214Pb

                                                                                                                     228Ac        352 keV
                                              1400                                                                   338.4 keV
Pb-210        22.26 a      46,5     4,05
Am-241         432,2       59,54    35,9
                                              1200
Th234         24.1 d       63,29    3,812
Th234         24.1 d       92,38
                                     5,58
Th234         24.1 d        92,8              1000                              212Pb
                                                                                                               214Pb
U235        7.038E+8 a   143,764    10,96                                     238.6 keV
                                                                                                               295.2 keV
U236        7.038E+8 a    163,36     5,08     800                         => 224Ra,   228Th

U237        7.038E+8 a    205,31     5,01
Ra-226        1602 a     186,21     3,59      600
U235        7.038E+8 a   185,71     57,2                          226Ra
Pb-212       10.643 h    238,63    44,646     400                 185.9 keV                    214Pb   241.9 keV

Ra-223       11.434 d    269,43      13,6     200

Pb-214      26.8 min.    295,21    19,247
                                                0
                                                       100,0   150,0          200,0           250,0                300,0         350,0          400,0   keV
Energy calibration is used to define
the final position of the peaks in the                                                                     223Ra             +   228Ac   : 270.3 keV
spectrum (Gain and Offset)                                                                                                   +   219Rn   : 271.2 keV
                                                                                                           269.6 keV
Detector calibration
           B/ Performance calibration : use of a standard source (IAEA or LEA)

   Absolute return
        If the reference is the number of radiations emitted by the source

                                         {
                        Nd
            EffAbs =              avec       Nd   Number of hits observed in the detector per sec.
                        N is                 Ni   Nb of shots emitted per sec by the source

   The absolute return depends on:
        geometry (distance, container, etc.)
        the intrinsic efficiency of the detector for a given energy
   The "geometry" is defined by:
        the distance between the source and the sample
        the shape of the sample (spatial distribution)
        the density of the sample (self-absorption)
Detector calibration
                    B/ Performance calibration = Detection efficiency is a function of energy
                                                 Element    Periode     Energie   Emission
                                                                          keV        %              % émission

                                                 Pb-210      22.26 a      46,5     4,05
                                                 Am-241       432,2       59,54    35,9
        Detector efficiency                      Th234       24.1 d       63,29    3,812                  Reyss et al., 1995
                                                 Th234       24.1 d       92,38
                                                                                    5,58
                                                 Th234       24.1 d        92,8
                                                 U235      7.038E+8 a   143,764    10,96
                                                 U236      7.038E+8 a    163,36     5,08
                                                 U237      7.038E+8 a    205,31     5,01
                                                 Ra-226      1602 a     186,21     3,59
                                                 U235      7.038E+8 a   185,71     57,2
                                                 Pb-212     10.643 h    238,63    44,646

                                                 Ra-223     11.434 d    269,43      13,6

                                                 Pb-214    26.8 min.    295,21    19,247

The efficiency of the detector varies as a                                                   The efficiency of the detector
          function of the energy                                                             varies as a function of the size
                                                                                                   germanium crystal
Detector calibration                                 boxes

B/ Detector efficiency
                                                                                               12cc
                                                                                                             61cc
- Analysis of standards in the same geometry                                     3cc
- Relationship: number of pulses detected activity                                            1cc

                                     214Pb                                  Sample geometry for planar type detector
                                     352 keV

                         214Pb

                         295.2 keV

                                               Nb of counts at 295.2 keV:

         214Pb   241.9 keV
                                               X counts  4980 Bq kg-1 x Y kg
                                               analysed

                                                         Relationship to apply
                                                         for samples:

     Example : RGU1 standard                             Number of hits detected => Activity
             (4980 Bq kg-1)
Correction of continuum and background noise

                                   269.6 keV
                     1000

                                               Continuum

                 Counts
     Continuum            100                    (right)
       (left)

                           10
                                262 270 278

                                Energy (keV)

 - Correction of continuum : Raw Peak - (continuum right + continuum left) / 2 = Net Peak

 - Correction of background noise: Number of counts without sample (cpm)
                                        (to be subtracted from the net peak)

           + Detection efficiency => quantification of activity in Bq or dpm
                                             (per kg or per L of sample)
Use of 210Pb deposited in the sediment to estimate
                                               sedimentation rates
                              Ocean

                              226Ra           210Pb                                                 210Pb               =
                                                                                                             excess

                                                  Retiré de                           210Pb                 – (210Pb-226Ra)
                                                  son père                                          total
                                                                                                                     supported
                               Sediment

                              226Ra           210Pb                 210Pb

                  210Pb (Bq kg-1)                                    Ln (210Pb)
             0                                                 0

             10                                                10
                                Exponential fit                                   Exponential fit
                                                  Depth (cm)
Depth (cm)

             20                 A = A0 e-λt                    20                 ln A = -λt + ln A0         with t = z / S :
                                                                                  m : slope                  ln A = -λz / S + ln A0
             30                                                30                                            m = λ/ S
                                                                                                             S = λ/ m
                                                                                                             with λ = ln 2 / T 1/2
                                                                                                             S usually in cm y-1 or mm y-1
Thiebault et al., Anthopocene, 2017
Practical work: Study of a sample of marine sediment core
                     off New Zealand

- Visit of the LAFARA platform website
- Remote connection with LAFARA instruments
- Presentation of the APEX-gamma software (Mirion-Canberra)
- Energy calibration: identification of peaks
- Efficiency calibration: quantification of activities
- Analysis of gamma spectra of core samples
- Determine the activity in excess 210Pb
- Determine a sedimentation rate
- Comment
You can also read