L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO

Page created by Paul Delgado
 
CONTINUE READING
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
L’ intelligenza artificiale nella
   diagnostica istologica degli
       adenomi: l’esperienza
              Torinese
L. BERTERO
Div. of Pathology, Dept. Medical Sciences
University of Turin, Italy

                                            17 dicembre 2021
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Computational
                pathology

      Feature
                              Deep learning
    engineering

Explicit programming     Automated learning
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
• Automated learning
• Predetermined
  feature selection                                                • Freely available
                                                                     source codes of
• Multiple interactions     Feature                                  effective neural
                                                   Deep learning     network
  pathologists/informa    engineering
  ticians needed                                                     architectures

• Time consuming                                                   • Superior results in
                                                                     most cases

Deep learning overall workflow:

                                 Annotation
Collection of                                        Model
                               (images, clinical                               Validation
    WSI                                             training
                                   data,…)
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
ImageNet Large Scale   • Since ~2010
 Visual Recognition
                       • Efficacy of CNN (convolutional neural networks)
Competition (ILSVRC)

                                                                  • Breast cancer metastases in
                                                                    sentinel lymph nodes
                                    CAMELYON challenge
                                                                  • Dataset of 1399 manually
                                                                    annotated WSI
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Image
                                                  segmentation
                                                                          Cell detection
                                                                          and counting

                            Tumor detection,
• Reducing repetitive and   classification and
  time-consuming tasks           grading                                      Evalutation of
                                                       Computational
                                                         pathology             IHC markers
• Lower interobserver
  variability

                                          Analysis of
                                       kidnet transplant                Mitosis
                                           biopsies                    detection
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Colorectal carcinoma

•   Colorectal carcinoma (CRC) is
    the second most deadly and
    the third most common cancer
    (Globocan 2020)

•   Colorectal cancer screening
    enables prompt detection of
    early CRC or preinvasive
    lesions, but represents a
    significant workload for both
    endoscopy and pathology units
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Digital pathology for colorectal carcinoma

•   Distinction between tumor tissue and stroma
    (Kather JN et al. Sci Rep 2016)

•   Outcome prediction (Bychkov D et al. Sci Rep
    2018; Kather JN et al. PLoS Med 2019; Skrede
    O et al. Lancet 2020)

•   Molecular profile prediction (Yamashita R et
    al., Lancet Oncol 2020; Sirinukunwattana K et
    al. Gut 2021; Bilal M et al. Lancet Digit Health
    2021)

•   Adenoma classification…
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Adenoma classification
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Adenoma classification
L' intelligenza artificiale nella diagnostica istologica degli adenomi: l'esperienza Torinese - L. BERTERO
Adenoma classification

Limitations:
• Lack of dysplasia grading
• Lack of normal tissue
• Lower performance during external testing
UniTOPatho
Dataset (WSI images)

 • H&E slide acquired on the Hamamatsu Nanozoomer S210
   scanner (200X)

 • Manual annotation according to 6 classes:

     •   NORM: normal tissue
     •   HP: hyperplastic polyp
     •   TA.LG: tubular adenoma, low-grade dysplasia
     •   TA.HG: tubular adenoma, high-grade dyplasia
     •   TVA.LG: tubulo-villous adenoma, low-grade dysplasia
     •   TVA.HG: tubulo-villous adenoma, high-grade dysplasia
                                                                Perlo D. et al. MICAD 2021
• CNN: ResNet-18
• Pre-training on the ImageNet classification task
• Data augmentation: one random operation between rotation,
  equalization, solarization, inversion and contrast enhancing

 Patches normalization: relevant features are
 not embed in color, but in image texture and
 signal strenght

                                                                 Perlo D. et al. MICAD 2021
Patches resolution:

                      • Achieved results are similar to those reported by
                        Denis B et al. (Eur J of Gastroenterol Hepatol 2009)

                                                      Perlo D. et al. MICAD 2021
Dysplasia grading

                    • Poor results in
                      distinguishing
                      TA versus
                      TVA/VA

                      Perlo D et al. MICAD 2021
Multi-resolution analysis

• Adenoma type and dysplasia
  grade are best classified at
  different scales

                                 Barbano CA et al. IEEE ICIP 2021
Multi-resolution analysis

Limitations:
• Some entities missing (serrated adenomas, invasive adenocarcinomas,…)
• Larger dataset is warranted
• Lack of external validation
                                                                          Barbano CA et al. IEEE ICIP 2021
Challenges
                                       Combined H&E and IHC
                                         for WSI annotation

•   Collect      large-scale                       Weakly
    annotated       datasets                     supervised
                                                  learning
    (images and clinical
    annotations)

                                       Scailing up input
                                        to whole WSI
Challenges
                   Explainable/trust                                                   Data
                                                       Differences in technical
                      worthy AI                                                    augmentation
                                                      processing (different H&E,        or
                                                      different slide scanner,…)   normalization

•   Generalizability      and                                Differences in
    validation of results                                        patient
                                                              populations

                                                   Management of
               Internal/external/diagnostic         unexpected
                    /clinical validation              findings
Thank you!
                           •   NTT Data Spain                               •   AOU Città della Salute e
                           •   Universitat Politecnica de Valencia (UPV)        della Scienza di Torino
                           •   Philips Medical Systems Netherland BV        •   Ecole Polytechnique
                           •   Software Imagination & Vision SRL (SIMAVI)       Federale de Lausanne
                           •   Wings ICT Solutions Information &            •   Centre Hospitalier
•   Prof.ssa P. Cassoni        Communication Technologies IKE                   Universitarie Vaudois
•   Dr. L. Bertero         •   Thales Six GTS France SAS                    •   Tree Technology SA
•   Dr. A. Gambella        •   Commissariat a l’energie atomique et aux     •   Otto Von Guericke
•   Dr. E. Bottasso            energies alternatives                            Universitat Magdeburg
                           •   Barcelona Supercomputing Center              •   Stelar Security
                           •   Pro Design Electronic GmbH                       Technology Law
                           •   Karolinska Institutet                            Research
•   Prof. M. Grangetto
                           •   Fundacion para el fomento de la              •   Spitalul Clinic Prof. Dr.
•   Dr. E. Tartaglione
                               investigacion sanitaria y biomedica de la        Theodor Burghele
•   Dr. D. Perlo
•   Dr. C. A. Barbano          comunitat valenciana (FISABIO)               •   Centro di Ricerca,
•   Dr. A. Fiandrotti      •   Università degli Studi di Modena e Reggio        Sviluppo e Studi
                               Emilia (UNIMORE)                                 Superiori in Sardegna
                           •   Stockholms lans landsting                        SRL (CRS4)
You can also read