Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and Carcass quality characteristics

 
CONTINUE READING
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 2, 2011

                   © Copyright 2010 All rights reserved Integrated Publishing Association

Research article                                                                        ISSN 0976 – 4402

Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its
       effects on the performance and Carcass quality characteristics
                           Abbas Talha E, Ahmed Mohamed E
 Department of Poultry Production and Technology, Faculty of Agricultural Technology and
        Fish Science, University of ALneelain, Khartoum, Sudan. P.O. Box: 12702
                                   talhabbs@yahoo.com
                              doi:10.6088/ijes.00202020021

ABSTRACT

The study was carried out to evaluate the effects of partially replacement of sorghum (Fetrita)
with sesame bran in the broiler chicks’ diet, on the performance and carcass quality. The
experiment was conducted at the experimental poultry farm (open sided house) of Faculty of
Agricultural Technology and Fish Sciences, University of Alneelain, Jebel-Awlia, Khartoum
South. A total of ninety, one-day-old unsexed broiler chicks (Hubbard) were assigned into
nine pens in groups of ten chicks in a pen, in a completely randomized design. The
experiment lasted 5 weeks (8 – 42 day). Three experimental iso-caloric and iso-nitrogenous
diets were supplied ad – libitum. 10% of sorghum was replaced with sesame bran + 0.1% of
enzyme in the first experimental diet. In the second diet 20% of sorghum was replaced with
sesame bran + 0.1% of enzyme. The third one which is the control was free of sesame bran
and enzyme. Each experimental diet was fed to three replicates. Feed consumption, weight
gain, feed conversion ratio and carcass quality characteristics (Dressing, Heart, gizzard, liver
and abdominal fat %) were recorded for the individual replicate of each dietary treatment.
Partially replacement of sorghum with 10 or 20% sesame bran + 0.1% enzyme resulted in a
significant (P< 0.05) increased feed consumption and poor feed conversion ratio comparing
to the control diet during finisher and whole periods. Replacement of 10 or 20% 0f sorghum
with sesame bran resulted in insignificant (P> 0.05) effect on weight gain comparing to the
control diet, during starter, finisher and whole periods. 10% replacement of sorghum with
sesame bran produced significant (P< 0.01) lower final live body weight and (P< 0.05)
dressing %, and 20% replacement of sorghum showed only significant (P< 0.01) lower final
live body weight than control diet. It was concluded that replacement of 10 or 20% of
sorghum with sesame bran in the broiler chick diet with supplementation of enzyme produces
adverse effects on performance and dressing% only during finisher period, but not during
starter period during which it was recommended to reduce the cost of feed.

Keywords: Broilers, Carcass, Enzyme, Performance, Sesame bran.

1. Introduction

In Sudan the cost of the poultry products is very high because increase in the cost of feed
ingredients specially energy. Therefore nutritionists searching for cheap available alternative
sources of energy. Sesame bran is a bi-product of sweet industries. Its content of fibre (non
starch polysaccharides) is expected to be high similar to other bi-products (wheat bran, oat
bran and rye bran). It was reported that, higher level of fibres (NSPs) in broiler diet increased
intestinal length specially caecum length and weight, and decreased digestibility of all
nutrients (Jørgensen et al., 1996). Many researchers reported the anti-nutritive activity of
non-starch polysaccharides (NSPs) when introduced in the broiler diets. Choct, M. and
Annison, G. (1990) found that, higher inclusion of wheat pentosans in broiler diet

Received on September 2011 Published on November 2011                                              616
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                     Carcass quality characteristics

significantly reduced growth and feed efficiency. Annison and Choct (1991) assured that,
depending on the dose of inclusion pentosans of wheat and rye reduced nutrient digestibility
and growth of broilers. In addition Lavinia et al., (2010) noticed that, wheat (NSPs) affect
nutritional, productive and digestive parameters when added to broiler diet. Authors
recommended use of enzymes in broiler diet to overcome deleterious effects of (NSP) on
broiler performance. Żyła et al., (2000) observed that, when broilers offered wheat-based
low-phosphorus diets with phytase and acid phosphatase and also with pectinase, citric acid
and calcium revealed increased body weight gain, feed consumption, feed efficiency and
decreased intestinal viscosities. It was reported that, use of ß-glucanases enzyme in barley-
based diet for poultry increases body weight gain (Broz and Frigg, 1986) and increase feed
efficiency (Newman and Newman, 1987).

Study was performed to evaluate effect of partial replacement of sorghum with sesame bran
plus enzyme on performance and carcass quality characteristics.

2. Materials and Method

2.1 Test Specimens

The experiment was conducted at the experimental poultry farm (open sided house) of
Faculty of Agricultural Technology and Fish Sciences, University of Alneelain, Jebel – Awlia,
Khartoum South. Ninety one – day – old, unsexed commercial broiler chicks (Hubbard) were
assigned into 9 pens in groups of 10 chicks in a pen. Each pen was provided with feeder and
drinker. Each experimental diet was fed to 3 replicates, in a completely randomized design.
Broiler chicks were kept on a deep litter floor system. Three experimental iso-caloric and iso-
nitrogenous diets were formulated according to proximate analysis of sesame bran as
described by AOAC (1984) (Table 1) to meet or exceed the (NRC, 1994) requirements of
broiler chicks.

                      Table 1: Determined analysis of Sesame bran sample

    Item                                                %
    Dry matter                                          95.43
    Fat                                                 4.76
    Crude protein                                       13.8
    Crude fibre                                         20.34
    Ash                                                 34.09
    Nitrogen free extract                               22

2.2 Materials properties

10% of sorghum was replaced with sesame bran + 0.1% of enzyme in the first experimental
diet. In the second diet 20% of sorghum was replaced with sesame bran + 0.1% of enzyme.
The third one which is the control was free of sesame bran and enzyme. The experiment
lasted five weeks (8 – 42 days). During the first week birds fed on pre-starter diet for 5 days
(Table 3) then on the control diet for 2 days. Composition and calculated analysis of
experimental diets shown in Table 2a and 2b. Feed and water were provided ad–libitum. Feed
consumption, weight gain and feed conversion ratio were recorded weekly for the individual
replicate of each dietary treatment. At the end of the experiment 2 chicks from each replicate
within each treatment was randomly selected and weighed to obtain average live body weight,

                                   Abbas Talha E, Ahmed Mohamed E                                        617
                   International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                       Carcass quality characteristics

then slaughtered by a sharp knife for complete bleeding and feather was plucked. Head,
viscera and shanks were removed. Carcass was left for one hour to remove excess water.
Dressing percentage was calculated without giblets using the following equation:

                     Carcass weight
Dressing percentage = ------------------------- x 100
                      Live body weight

Heart, gizzard, liver and abdominal fat were weighed and the weight of each part was
calculated as a percentage of the carcass weight. Mortality was recorded as it occurred.
Routine and occasional management, vaccination and medication were carried out as and
when due. The data generated from the experiment was subjected to analysis of variance.
Duncan's multiple range test was used to assess significance of difference between means as
described by Little and Hills (1978).

                Table 2a: Composition and calculated analysis of experimental diets

      Ingredients                              A (Control)                     B (10% sesame bran)
                                               Starter%       Finisher%        Starter%   Finisher%
      Sorghum (Feterita)                       55             62               45         52
      Ground nut Cake                          20             14.9             22.5       15.8
      Sesame Cake                              11.5           6                10.13      7.4
      Wheat bran                               5.3            8                2          4.2
      Super Concentrate*                       5              5                5          5
      Dicalcium phosphate                      0.3            0.4              0.37       0.45
      Oyster shell                             0.7            0.6              0.7        0.55
      Cholin                                   0.1            0.1              0.1        0.1
      Enzyme                                  0              0                0.1        0.1
      Anti-aflatoxin                           0.1            0.1              0.1        0.1
      Oil                                      2              2.9              4          4.3
      Sesame bran                              0              0                10         10
      Vitamin (Premix)                         0.25           0.25             0.25       0.25
      NaCl                                     0.25           0.25             0.25       0.25
      Total                                    100            100              100        100
      Metabolizable energy (Kcal/Kg)           3131           3208             3086       3136
      Crude protein (%)                        23.56          20.43            23.54      20.78
      Lysine (%)                               1.11           1.00             1.10       0.99
      Methionine (%)                           0.53           0.45             0.50       0.45
      Calcium (%)                              1.05           0.90             1.05       0.91
      Available phosphorous (%)                0.43           0.44             0.43       0.44

*Cp 40%, ME 2000 kcal/kg, C. fiber 3%, EE 3%, Ash 34%, Ca 8%, Av. P 1.38%, Lysine
12%, Methionine 3%, Methionine + Cystine 3.5%. Vitamin A 250000 IU/kg, Vitamin D3
50000 IU/kg, Vitamin E 500 mg/kg, Vitamin K3 60 mg/kg, Vitamin B1/Thiamin 20 mg/kg,
Vitamin B2/Riboflavin 100 mg/kg, Niacin Vitamin PP 600 mg/kg, Pantothenic acid/Vitamin
B3 160 mg/kg, Vitamin B6/Pyridoxine 40 mg/kg, Vitamin B12 300 mcg/kg, Biotin/Vitamin
H 2000 mcg/kg, Choline 10000 mg/kg, Vitamin C 4000 mg/kg, Folic Acid 30 mg/kg, Iron
800 mg/kg, Manganese 1400 mg/kg, Copper 120 mg/kg, Zinc 1000 mg/kg, Iodine 6 mg/kg,
Cobalt 12 mg/kg, Selenium 3 mg/kg

  Pentoxanase+ xylanase+ Bacterial α-amylase+ Nutral protease+ Fungal ß-
glucanase+cellulase.
                                     Abbas Talha E, Ahmed Mohamed E                                        618
                     International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                     Carcass quality characteristics

              Table 2b: Composition and calculated analysis of experimental diets

    Ingredients                                             C (20% sesame bran)
                                                            Starter%       Finisher%
    Sorghum (Feterita)                                      35             42
    Ground nut Cake                                         17.8           14.9
    Sesame Cake                                             15.6           9.43
    Wheat bran                                              0.0            1
    Super Concentrate*                                      5              5
    Dicalcium phosphate                                     0.4            0.55
    Oyster shell                                            0.5            0.45
    Cholin                                                  0.1            0.1
    Enzyme                                                 0.1            0.1
    Anti-aflatoxin                                          0.1            0.1
    Oil                                                     5.4            6.4
    Sesame bran                                             20             20
    Vitamin (Premix)                                        0.25           0.25
    NaCl                                                    0.25           0.25
    Total                                                   100            100
    Metabolizable energy (Kcal/Kg)                          3007           3103
    Crude protein (%)                                       23.45          20.71
    Lysine (%)                                              1.06           0.96
    Methionine (%)                                          0.54           0.45
    Calcium (%)                                             1.05           0.91
    Available phosphorous (%)                               0.43           0.44

*Cp 40%, ME 2000 kcal/kg, C. fiber 3%, EE 3%, Ash 34%, Ca 8%, Av. P 1.38%, Lysine
12%, Methionine 3%, Methionine + Cystine 3.5%. Vitamin A 250000 IU/kg, Vitamin D3
50000 IU/kg, Vitamin E 500 mg/kg, Vitamin K3 60 mg/kg, Vitamin B1/Thiamin 20 mg/kg,
Vitamin B2/Riboflavin 100 mg/kg, Niacin Vitamin PP 600 mg/kg, Pantothenic acid/Vitamin
B3 160 mg/kg, Vitamin B6/Pyridoxine 40 mg/kg, Vitamin B12 300 mcg/kg, Biotin/Vitamin
H 2000 mcg/kg, Choline 10000 mg/kg, Vitamin C 4000 mg/kg, Folic Acid 30 mg/kg, Iron
800 mg/kg, Manganese 1400 mg/kg, Copper 120 mg/kg, Zinc 1000 mg/kg, Iodine 6 mg/kg,
Cobalt 12 mg/kg, Selenium 3 mg/kg

  Pentoxanase+ xylanase+ Bacterial α-amylase+ Nutral protease+ Fungal ß-
glucanase+cellulase.

3. Findings

Table 3 showed that, replacement of sorghum with 10 or 20% sesame bran + 0.1% enzyme to
broiler chick diet had no significant (P> 0.05) effect on feed consumption, body weight gain
and feed conversion ratio comparing to the control diet during starter period (8-21 days), but
replacement of sorghum with 10% sesame bran resulted in significant (P< 0.05) higher body
weight gain than replacement of sorghum with 20% sesame bran. Table 4 revealed that,
partial replacement of sorghum with sesame bran during finisher period (22-35 days) resulted
in significant (P< 0.05) increased feed consumption and poor feed conversion ratio, and
insignificant (P> 0.05) effect on body weight gain comparing to the control diet. Inclusion of
sesame bran instead of sorghum in the broiler diets during whole period (8-35 days) produced
significant (P< 0.05) poor feed conversion ratio. Only 10% replacement of sorghum with

                                   Abbas Talha E, Ahmed Mohamed E                                        619
                   International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                      Carcass quality characteristics

sesame bran led to significant (P< 0.05) increase in feed consumption when compared to
control diet. No significant (P> 0.05) effect on body weight gain was observed as a result of
replacing sorghum with sesame bran in broiler diet (Table 5). Significant (P> 0.01) lower
final live body weight was recorded by birds fed on diet in which sorghum partially replaced
with sesame bran compared to those offered control diet. Only 10% replacement of sorghum
with sesame bran showed significant (P< 0.05) lower dressing% than control diet. Partial
replacement of sorghum with sesame bran had no effects on liver, Gizzard, heart and
abdominal fat% (Table 6).

 Table 3: Effects of supplementation of sesame bran to broiler chicks diet on the performance
                            during the starter period (8 – 21 days).

                           Zero %              10%               20%                          5% SSR
                           supplementat       supplementat       supplementat       ±SE
                           ion of sesame      ion of sesame      ion of sesame
                           bran               bran               bran
     Feed                  514                481.2              462.5              22.68     82.55
     Consumption
     (gm/bird/week)
     Weight Gain           195.4ab            202.1a             182.3b             4.83      17.58
     (gm/bird/week)
     Feed                  2.63               2.38               2.50               0.126     0.458
     Conversion
     Ratio (kg feed/
     kg weight)
     Mortality (%)         0                  0                  0
- Values are mean of four replicate groups of six birds each.
  SE: Standard error of the mean difference.
   a-c values in the same raw with different superscripts are significantly different.
  SSR: Shortest Significant Range
**: Highly significantly different (p < 0.01).

 Table 4: Effects of supplementation of sesame bran to broiler chicks diet on the performance
                           during the finisher period (22 – 35 days).
                           Zero %              10%               20%                  ±SE      5%
                           supplementat       supplementat       supplementat                  SSR
                           ion of sesame      ion of sesame      ion of sesame
                           bran               bran               bran
     Feed                  790.7 b            1143.1 a           1070.1 a           73.33      266.9
     Consumption
     (gm/bird/week)
     Weight Gain           424.3              437.1              440.7              26.19      95.33
     (gm/bird/week)
     Feed                  1.87 a             2.60 b             2.43 b             0.077      0.28
     Conversion
     Ratio (kg feed/
     kg weight)
     Mortality (%)         3.33               16.7               3.33
 - Values are mean of four replicate groups of six birds each.
   SE: Standard error of the mean difference.
a-c values in the same raw with different superscripts are significantly different.
   SSR: Shortest Significant Range

                                    Abbas Talha E, Ahmed Mohamed E                                        620
                    International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                      Carcass quality characteristics

**: Highly significantly different (p < 0.01).

 Table 5: Effects of supplementation of sesame bran to broiler chicks diet on the performance
                            during the whole period (8 – 35 days).

                            Zero %             10%               20%                        5% SSR
                            supplementat      supplementat       supplementat        ±SE
                            ion of sesame     ion of sesame      ion of sesame
                            bran              bran               bran
     Feed                   680 b             878.3 a            827.1 ab            45.4          165.5
     Consumption                                                                     8
     (gm/bird/week)
     Weight Gain            332.7             343.1              338.5               14.3          52.23
     (gm/bird/week)                                                                  5
     Feed                   2.05 a            2.55 b             2.45 b              0.07           0.274
     Conversion                                                                      5
     Ratio (kg feed/
     kg weight)
     Mortality (%)          3.33              16.7               3.33
 - Values are mean of four replicate groups of six birds each.
   SE: Standard error of the mean difference.
a-c values in the same raw with different superscripts are significantly different.
   SSR: Shortest Significant Range
 **: Highly significantly different (p < 0.01).

   Table 6: Effects of supplementation of sesame bran to broiler chicks diet on the carcass
                                     quality of broilers
                    0%                        10%               20%                         5% SSR
                    supplementation       supplementa       supplementa       SE ±
                    of sesame bran        tion of           tion of
                                          sesame bran       sesame bran
     Live body      2136.4 a              1796.6 c          1973.4 b          30.9
     weight                                                                   2        98.93**
     (gm)
     Dressing       73.26 a               70.31 b           71.61 ab          0.69          2.21
     %
     Liver %        35.8                  33.73             32.03             0.16
                                                                              4        0.526
     Gizzard        22.93                 29.13             41.68             0.11
     %                                                                        5        0.369
     Heart %        7.98                  9.22              8.56              0.04
                                                                                       0.129
     Abdomina       43.57                 44.78             47.41             0.08
     l fat %                                                                  1        0.258
 - Values are mean of four replicate groups of six birds each.
   SE: Standard error of the mean difference.
a-c values in the same raw with different superscripts are significantly different.
   SSR: Shortest Significant Range
 **: Highly significantly different (p < 0.01).

                                    Abbas Talha E, Ahmed Mohamed E                                          621
                    International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                     Carcass quality characteristics

4. Discussion

Absence of significant reduction in body weight gain, feed consumption and feed conversion
ration due to replacement of sorghum with sesame bran of higher fibre content, during starter
period was expected due to the addition of enzymes combination (Pentoxanase+ xylanase+ α-
amylase+ protease+ß-glucanase+cellulase), i.e. enzymes overcome deleterious effects of non-
starch polysaccharides content of sesame bran on the broiler performance. Mathlouthi et al.,
(2002) reported that, feed consumption, body weight gain and feed conversion ratio were
improved as a result of supplementation of xylanase and ß-glucanase to the wheat and barley-
based diet for broilers from 3 to 25 days of age. It was reported that, use of ß-glucanases
enzyme in barley-based diet for poultry increases body weight gain (Broz and Frigg, 1986)
and increase feed efficiency (Newman and Newman, 1987). Significant poor feed conversion
and increased feed consumption during finisher and whole periods (Tables 5 and 6), and
reduced final live body weight and dressing% (Table 7) as a result of partial replacement of
sorghum with sesame bran may be due to the higher fibres content of sesame bran (20.34%)
Lavinia et al., (2010), and enzyme supplementation was unable compensate its deleterious
effects. Mouräo et al., (2006) noticed that, addition of exogenous ß-glucanases and ß-
xylanases to the diets containing rye and rye + alfalfa failed to improve bird performance.
Ponte et al., (2004) assured fail of exogenous enzyme to compensate effect of alfalfa in the
broiler diet. Authors explained that inability of enzymes to improve bird performance
occurred because enzyme inhibition or proteolysis in the gastrointestinal tracts of the birds.
Mouräo et al., (2006) added that lack of enzyme effect in older birds is possible. In addition,
as mentioned by Saleh et al., (2004) presence of protease in the enzyme combination may
lead to digestion of other enzymes hence affect their activities. Insignificant effect produced
by partial replacement of sorghum with sesame bran + enzyme on liver, gizzard, heart and
abdominal fat% (Table 7) was assured by Nahas and Lefrançois (2001) who found
insignificant effect of addition of whole barley with enzyme to grower and finisher broiler
diets on liver, gizzard, heart and abdominal fat %.

5. Conclusion

It was concluded that, partial replacement of sorghum with sesame bran + enzyme up to 20%
is recommended during starter period without any adverse effect on broiler performance, but
during finisher period will produce adverse effect on broiler performance and dressing%.

Acknowledgement

The authors wish to thanks Khalid Mohamed Kheir and Rania Jumaa Abiadh for their
appreciated help in data collection.

6. References

      1. Annison, G. and Choct, M (1991), anti-nutritive activities of cereal non-starch
         polysaccharides in broiler diets and strategies minimizing their effects. Worl. Poult.
         Sci. J., 47(3), pp 232-242.

      2. Association of Official Analytical Chemists (1984), official Method of Analysis,
         14th ed., Washington, D.C.

                                   Abbas Talha E, Ahmed Mohamed E                                        622
                   International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                   Carcass quality characteristics

    3. Broz, J. and Frigg, M (1986), effects of beta-glucanase on the feeding value of
       broiler diets based on barley or oats. Archiv. für. Geflügelkunde, 50, pp 41-47.

    4. Choct, M. and Annison, G (1990), anti-nutritive activity of wheat pentosans in
       broiler diets. Br. Poult. Sci., 31(4), pp 811-821.

    5. Jørgensen, H., Zhao, X. Q., Knudsen, K. E. and Eggum, B. O (1996), the influence
       of dietary fibre source and level on the development of the gastrointestinal tract,
       digestibility and energy metabolism in broiler chickens. Br. J. Nutr., 75(3), pp 379-
       395.

    6. Lavinia, S., Dan, D., Nicolae, C., Eliza, S., Ducu, S. and Calin, J (2010), evaluating
       the anti-nutritive effect of non-starch polysaccharides (NSP) correlated with the
       nutritional, digestive and productive performance indices in broilers. Romanian
       Biotechnological Letters, 15(5), pp 5581-5590.

    7. Little, T. M and Hills, F.J (1978), the completely randomized design and mean
       separation. Agricultural Experimentation: Design and Analysis. Academic Press.
       New York.

    8. Mathlouthi, N., Mallet, S., Saulnier, L., Quemener, B. and Larbier, M (2002),
       effects of xylanase and ß-glucanase addition on performance, nutrient digestibility
       and physico- chemical conditions in the small intestine contents and caecal
       microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res., 5, pp
       395-406.

    9. Mouräo, J. L; Ponte, P. I. P; Prates, J .A. M; Centeno, M. S. J; Ferreira, L. M. A;
       Soares, M. A. C and Fontes, C. M. G. A (2006), use of ß –glucanases and ß -1, 4
       xylanases to supplement diets containing alfalfa and rye for laying hens: Effects on
       bird performance and egg quality .J. Appl. Poult. Res, 15(2), pp 256 -265.

    10. Nahas, J. and Lefrançois, M. R (2001), effects of feeding locally crown whole
        barley with or without enzyme addition and whole wheat on broiler performance
        and carcass traits. Poult. Sci., 80, pp 195-202.

    11. National Research Council (1994), nutrient Requirements of Poultry. 9th edition.
        National Academic Press. Washington D. C.

    12. Newman, R. K. and Newman, C. W (1987), Beta-glucanase effect on the
        performance of broiler chicks fed covered and hulless barley isotypes having
        normal and waxy starch. Nutr. Rep. Inter., 36, pp 693-699.

    13. Ponte , P. I. P., Ferreira, L. M. A., Soares, M. A. C., Aguiar, M. A. N. M., Lemos, J.
        P. C., Mendes, I. and Fontes, C. M. G. A (2004), use of cellulases and xylanases to
        supplement diets containing alfalfa for broiler chicks: effects on bird performance
        and skin color. J. Appl. Poult. Res., 13, pp 412-420.

    14. Saleh, F., Ohtsuka, A., Tanaka, T. and Hayashi, K (2004), Carbohydrases are
        digested by proteases present in enzyme preparations during in vitro digestion. J.
        Poult. Sci., 41(3), pp 229-235.

                                 Abbas Talha E, Ahmed Mohamed E                                        623
                 International Journal of Environmental Sciences Volume 2 No.2, 2011
Use of Sesame Bran (Industry Byproduct) in the Broiler Chicks Diet and its effects on the performance and
                                   Carcass quality characteristics

    15. Żyła, K., Koreleski, J., Światkiewicz, S., Wikiera, A., Kujawski, M., Piironen, J.
        and Ledoux§, D. R (2000), effects of phosphorolytic and cell wall-degrading
        enzymes on the performance of growing broilers fed wheat-based diets containing
        different calcium levels. Poult. Sci., 79, pp 66-76.

                                 Abbas Talha E, Ahmed Mohamed E                                        624
                 International Journal of Environmental Sciences Volume 2 No.2, 2011
You can also read