Proposition de sujet de thèse 2021

Page created by Loretta Bailey
 
CONTINUE READING
Proposition de sujet de thèse 2021
Proposition de sujet de thèse 2021
(A remplir par les équipes d'accueil et à retourner à Isabelle HAMMAD : hammad@cerege.fr
*à renseigner obligatoirement pour la validation du sujet, (1) : A remplir lors de la campagne d'attribution des
allocations, à l'issue de la session de juin des Masters

Sujet de doctorat proposé *:
Encadrant(s) *: Doelsch Emmanuel, doelsch@cerege.fr
Laboratoire *: CEREGE, Equipe Environnement Durable

Tableau récapitulatif du sujet

Candidat(e)(1)
Nom - Prénom :
Date de naissance :
Licence (origine, années, mention) :
Mention et classement au Master 1 année (Xème sur Y)

Mention et classement au S3 du Master 2 (Xème sur Y)
Mention et classement au S4 du Master 2 (Xème sur Y)
Mention et classement au M2 (année) (Xème sur Y)
MASTER (nom, université)
Sujet de doctorat proposé*
Encadrants (2 max, indiquer si HDR ou pas)*                     Doelsch Emmanuel (HDR)
Laboratoire*                                                    CEREGE, Equipe Environnement
                                                                Durable
Programme finançant la recherche (indiqué si obtenu ou          Projet ACV–Ecoto(Mi)x :
envisagé) (1)
                                                                Adaptation des méthodes utilisées en Analyse
                                                                de Cycle de Vie pour évaluer l'impact
                                                                écotoxicologique des mélanges de
                                                                contaminants chimiques apportés par les
                                                                produits résiduaires organiques dans les sols
                                                                agricoles
                                                                Appel à projets ADEME IMPACTS
                                                                Pré-projet sélectionné pour la seconde phase
                                                                – date de soumission du projet final 31 mars

Sujet de doctorat proposé*
Intitulé* :
Revisiting methods used in Life Cycle Assessment to assess the ecotoxicological impact of trace elements
in agricultural soils amended with organic waste / Adaptation des méthodes utilisés en Analyse de Cycle
de Vie pour évaluer l’impact écotoxicologique des éléments traces dans les sols agricoles amendés avec
des résidus organiques
Descriptif *:
Agricultural recycling of organic waste (OW) derived from urban, agricultural, and agro-industrial sources
constitutes a key strategy for sustainable development (Avadí 2020). Nonetheless, repeated application of
nutrients-laden OW in crop fields can also drastically boost levels of contaminants in soil. Several national
monitoring programs point out that trace elements are, quantitatively, the main type of contaminants added to
agricultural soils and OW remains a major, if not the main source of trace elements (Cd, Cu, Zn, Pb, etc.) in
agricultural soils (Belon et al. 2012).
The large emissions of trace elements in the environment associated with their specific behaviour led most of
risk assessment methodologies to point out trace elements as the type of contaminants that dominates the
impacts on human health and, even more so, on aquatic and terrestrial ecotoxicity (Pettersen and Hertwich
2008; Pizzol et al. 2011a, b; Tarpani et al. 2020).
Toxicity is thus a key area of research in environmental assessment (Verones et al. 2017). Only life cycle
assessment (LCA) consider contaminants explicitly in terms of their impacts on human and both aquatic and
terrestrial ecosystems health by using toxicity models such USEtox (Rosenbaum et al., 2008). USEtox is a fate,
exposure and toxicity model that has gained importance in the last years thanks to continuous development and
refinement. For instance, recent works have attempted to include the characterisation of terrestrial ecotoxicity
of trace elements in USEtox. This approach proposed by Owsianiak et al. (2013) includes a fate factor (FF)
calculated as the total concentration of trace elements remaining in soil following their emission, an
accessibility factor (ACF) defined as the available fraction of the total concentration of a trace element in soil, a
bioavailability factor (BF) defined as the free ion fraction in soil solution, and a terrestrial ecotoxicity effect
factor (EF). The combination of these factors is known as characterisation factors.
We took advantage of the the ANR DIGESTATE (coordination: E. Doelsch) to review the state of the art in the
fields of environmental assessment and empirical research on biophysical processes governing the fate of
contaminants following application of OW to agricultural soils (Avadi et al. to be published in Advances in
Agronomy). First, we identified several limitations in existing environmental assessment frameworks for the
agricultural recycling of organic waste, regarding the absence or inadequate consideration of some biophysical
processes governing the fate of contaminants; and then, we proposed suitable approaches for a better
consideration of contaminants in LCA, such as complementary analytics, methods, and models.
The establishment of robust environmental assessment methodologies more particularly related to the input
of trace elements from OW to agricultural soils thus seems of a primary importance to ensure the sustainability
of the agricultural recycling of OW.

Research program
Considering the limitations underlined in our recent literature review, we hypothesized that the variability of
characterisation factors calculated in the most advanced LCA framework (USEtox) assessing the
terrestrial ecotoxicity of trace elements would be not only affected by the variability of the physical-
chemical properties of the soils, but also strongly affected by the the type of organic wastes added to
soils. This assumption is supported by very recent experimental and modelling results acquired during the
Suminapp project (Eurostars 2016-2020) They showed indeed that the variability of characterisation factors
induced by the application of only four types of livestock wastes on a single soil was similar to the variability
previously calculated for several hundreds of soils all around the world (Owsianiak et al. 2013).
Building on these results, the present PhD work will first aim at extending the validation of this hypothesis to
a larger range of organic wastes commonly spread on agricultural soils. Based on this latter dataset, the
PhD work will secondly aim at revisiting the computational methodologies and the consequent
characterisation factors used in LCA to assess the ecotoxicological impact of organic wastes-borne trace
elements spread on cultivated soils. To achieve these two objectifs, the PhD work will be sub-divided in three
steps.
Task 1. Revisiting the exposure characterisation factors: This task will aim at producing (i) a typology of
organic waste based on the trace element speciation and (ii) an experimental dataset designed to assess the
impact of the nature (urban vs. agricultural, raw vs. anaerobically and/or aerobically digested) of organic wastes
on the availability of trace element in a set of amended soils representative of temperate and tropical areas (see
Fig. 1 below). These two achievements will be then used to revisite the formalism of the three characterisation
factors (i.e. the fate, accessibility and bioavailability factors) allowing to calculate in LCA the exposure of soil
organisms to trace elements in amended soils.
Task 2. Revisiting the hazard characterisation factor: Based on the exposure dataset obtained in the task 1,
the task 2 will aim at revisiting the effect factor allowing to calculate in LCA the toxic effect (i.e. the hazard) of
trace elements accumulated in amended soils. According to the review paper we recently written (Avadi et al.
in prep), two formalisms will be compared. The first one will be based on the combination of the geochemical
WHAM model with a toxicity function (Tipping and Lofts 2015), while the second one will be based on the
free tool produced by Arche consulting (Oorts 2018). The choice between the two formalims will be done
according to the relevance of the toxicity assessment produced and to their practibility to be used routinely in
LCA procedure.
Task 3. Application to the assessment of realistic territorial scenarios of organic wastes recycling on
agricultural soils: In agreement with the integrative objective of our research unit, the task 3 will aim at
applying the newly developped methodology on two realistic case studies of agricultural recycling of organic
wastes implemented historically by our group. Each case study will combine data from recycling scenarios
made at a territorial scale (i.e. from ANR Isard in Senegal and CASDAR Girovar in La Reunion) with data
from long-term field trials (notably those in La Reunion and Senegal belonging to the SOERE PRO
international network). This last step is crucial to ensure the applicability of the method developped in tasks 1
and 2 for further operational LCA implementation adapted to the assessment of organic wastes recycling
scenarios.

                       Fig. 1. Experimental and modelling approach proposed for the tasks 1 and 2

References
Avadí A (2020) Screening LCA of French organic amendments and fertilisers. Int J Life Cycle Assess 25:698–718. https://doi.org/10.1007/s11367-
       020-01732-w
Belon E, Boisson M, Deportes IZ, et al (2012) An inventory of trace elements inputs to French agricultural soils. Sci Total Environ 439:87–95.
       https://doi.org/10.1016/j.scitotenv.2012.09.011
Fantke P, Bijster M, Guignard C, et al (2017) USEtox® 2.0 Documentation (Version 1)
Oorts K (2018) Threshold calculator for metals in soil A global tool for terrestrial risk assessment. ARCHE Consulting
Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of
       copper and nickel in soils. Environ Sci Technol 47:3241–3250. https://doi.org/10.1021/es3037324
Pettersen J, Hertwich EG (2008) Critical review: Life-cycle inventory procedures for long-term release of metals. Environ Sci Technol 42:4639–
       4647. https://doi.org/10.1021/es702170v
Pizzol M, Christensen P, Schmidt J, Thomsen M (2011a) Impacts of “metals” on human health: A comparison between nine different methodologies
       for Life Cycle Impact Assessment (LCIA). J Clean Prod 19:646–656. https://doi.org/10.1016/j.jclepro.2010.05.007
Pizzol M, Christensen P, Schmidt J, Thomsen M (2011b) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: A
       comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19:687–698.
Rosenbaum RK, Bachmann TM, Gold LS, et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for
       human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546.
Tarpani RRZ, Alfonsín C, Hospido A, Azapagic A (2020) Life cycle environmental impacts of sewage sludge treatment methods for resource
       recovery considering ecotoxicity of heavy metals and pharmaceutical and personal care products. J Environ Manage 260:109643.
Tipping E, Lofts S (2015) Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ Toxicol Chem
       34:788–798. https://doi.org/10.1002/etc.2773
Verones F, Bare J, Bulle C, et al (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean
       Prod 161:957–967. https://doi.org/10.1016/j.jclepro.2017.05.206
Détail du Programme finançant la recherche* : Projet ACV–Ecoto(Mi)x : Adaptation des méthodes utilisées
en Analyse de Cycle de Vie pour évaluer l'impact écotoxicologique des mélanges de contaminants chimiques
apportés par les produits résiduaires organiques dans les sols agricoles
Appel à projets ADEME IMPACTS
Pré-projet sélectionné pour la seconde phase – date de soumission du projet final 31 mars

Directeur(s) de thèse proposé(s)*
(limiter au plus à deux personnes principales, dont au moins une titulaire de l'HDR)

Directeur HDR proposé*
Nom - Prénom : DOELSCH Emmanuel
Corps : DR
Laboratoire : CEREGE, Equipe Environnement Durable
Adresse mail : doelsch@cerege.fr
Choix de cinq publications récentes (souligner éventuellement les étudiants dirigés co-signataires) :
Le Bars M., Legros S., Levard C., Chevassus-Rosset C., Montes M., Tella M., Borschneck D., Guihou A.,
       Angeletti B., Doelsch E. Counterintuitive fate of zinc sulfide nanoparticles in soil: dissolution does not
       mean availability. Submitted to Environmental Science: Nano.
Formentini T. A., Basile Doelsch I., Borschneck D., Venzon J., Pinheiro A., Fernandes C. V. S., Mallmann F. J.
       K., da Veiga M., Doelsch E. 2021 Redistribution of Zn towards light-density fractions and potentially
       mobile phases in a long-term manure-amended clayey soil. In Press Geoderma.
Hodomihou R.N., Feder F., Legros S., Formentini T. A., Lombi E., Doelsch E. 2020 Zinc speciation in organic
       waste drives its fate in amended soils. Environment Science & Technology, 54, 12034−12041.
Layet C., Santaella C., Auffan M., Chevassus-Rosset C., Montes M., Levard C., Ortet P., Barakat M., Doelsch
       E., 2019 Phytoavailability of silver at predicted environmental concentrations: does the ionic or
       nanoparticulate form matter? Environmental Science: Nano, 6, 127–135.
Le Bars M., Legros S., Levard C., Chaurand P., Tella M., Rovezzi M., Browne P., Rose J., Doelsch E. 2018
       Drastic change in zinc speciation during anaerobic digestion and composting: instability of nano-sized
       zinc sulfide. Environmental Science & Technology, 52, 12987-12996.

Thèses encadrées ou co-encadrées au cours des quatre dernières années*
Nom : Abraham Pappoe
Intitulé : Using a combined approach stable isotopes – speciation to understand the impact of long-term
spreading of organic effluents on agricultural soils
Type d'allocation : Co-financement INRAe - CIRAD
Date de début de l'allocation de doctorat : 1er octobre 2020
Date de soutenance (si la thèse est soutenue) :
Programme finançant la recherche : EC2CO DECODE
Situation actuelle du docteur (si la thèse est soutenue) :
Pourcentage de participation du directeur à l'encadrement en cas de co-direction : 50 %

Nom : Maureen Le Bars –2015-2019.
Intitulé : Devenir du zinc des produits résiduaires organiques après méthanisation et recyclage agricole : rôle
des nanoparticules de sulfure de zinc
Type d'allocation : Co-financement ADEME - CIRAD
Date de début de l'allocation de doctorat : 1er octobre 2015
Date de soutenance (si la thèse est soutenue) : 25 février 2019
Programme finançant la recherche : ANR DIGESTATE
Situation actuelle du docteur (si la thèse est soutenue) : Postdoctorante ETH Zurich
Pourcentage de participation du directeur à l'encadrement en cas de co-direction : 33 %

Nom : Clément Layet
Intitulé : Phytodisponibilité des nanomatériaux, et impact sur le prélèvement d’éléments traces métalliques
Type d'allocation : Co-financement ADEME – LABEX Serenade
Date de début de l'allocation de doctorat : 1er octobre 2013
Date de soutenance (si la thèse est soutenue) : 11 décembre 2017
Programme finançant la recherche : EC2CO
Situation actuelle du docteur (si la thèse est soutenue) : -
Pourcentage de participation du directeur à l'encadrement en cas de co-direction : 33 %
You can also read