What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld

Page created by Shane Jenkins
 
CONTINUE READING
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
What we do (not) understand about carbon
            nanomembranes

                       Jürgen Schnack

  Department of Physics – University of Bielefeld – Germany
        http://obelix.physik.uni-bielefeld.de/∼schnack/

    Seminar, Bielefeld University, D0, 11 December 2020

                                                              Jahresb
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?   6                                           Introduction

                  Introduction

                                 Jürgen Schnack, CMD for CNM    1/36
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?   6                                          Introduction

         There are various carbon-based
               nanostructures . . .

                                Jürgen Schnack, CMD for CNM    2/36
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?                    6                                                                                                                                Introduction

            . . . and carbon-based cross-linked SAMs (I).
             www.advmat.de
                                                                                                                                       www.MaterialsViews.com
REVIEW

           Figure 2. Schematic for the formation of carbon nanomembranes (CNMs) and graphene from molecular precursors. a) Schematic illustration of the
           fabrication route for CNMs and graphene: self-assembled monolayers are prepared on a substrate (i), then crosslinked by electron irradiation to form
    A.   Turchanin,       A. Gölzh
           CNMs of monomolecular        äuser,
                                     thickness (ii). Advanced         Materials
                                                     The CNMs are released            28, 6075-6103
                                                                            from the underlying                   (2016).
                                                                                                substrate (iii), and further annealing at 900 °C transforms them
           into graphene. b) Chemical structures of the different precursor molecules discussed in this review. Adapted with permission.[46] Copyright 2013, ACS
           Publications.

             bonds between the reactive end groups and the substrate atoms              2e (see Figure 2b) form densely packed arrangements[19] with
             and the van der Waals interactions between the carbon atoms                the (√3 × √3) unit cells of the adsorption positions and with
             in the core of the precursor molecules. To obtain SAMs with                                                                    Jürgen Schnack,
                                                                                        the (2√3 × √3) superstructures of the molecular backbones.   In      CMD for CNM   3/36
             desired molecular arrangements, such parameters like immer-                these monolayers, the surface area per molecule is the same
             sion duration, temperature, concentration, and solvent polarity            (21.6 Å2); thus, the surface density of carbon atoms can be pre-
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?               6                                                                                                                                          Introduction

                      . . . and carbon-based cross-linked SAMs (II).

                                                                                                                                                  www.advmat.de

                                                       full papers                                                                                           R. Jordan, A. Gölzhäuser, et al.
                                                                                                                          tip of a scanning tunneling microscope;
COMMUNICATION

                                                          biomedical field as artificial nacre[17] and as a novel material
                                                                                                                          resistance was then determined by a two-point
                                                          used in surgery.  [18]
                                                                                 So far, a common feature of all developedmeasurement in UHV. Figure 2A shows an
                                                          freestanding polymer nanomembranes is the crosslinking ofSEM      the image of a tungsten tip touching a
                                                          polymer itself to ensure the mechanical stability of the layer. nanosheet that suspends over an 11 ! 11 mm2
                                                          However, for the fabrication of chemical- or bioresponsive      square opening. Additional resistivity measure-
                                                          polymer-based nanomembranes, the high crosslinking natu-        ments were carried out under ambient condi-
                                                          rally reduces the interactions between the polymer chainstions.  and To this end, nanosheets heated directly
                                                          the environment and thus impairs the sensitivity and flexibilityon gold substrates in UHV where transferred
                                                          of the films. Analogously to crosslinked polymer films
                                                                                                                          onto silicon oxide, and their sheet resistance
                                                          versus polymer brushes on substrates, a brush reacts more
                                                          quickly and has a higher sensitivity towards external stimuli.
                                                                                                                          was determined under ambient conditions by a
                                                          The entire layer has a better accessibility, even for larger    four-point measurement (see SI). The sheet
                                                          molecules, and the strong chain stretching results in           resistivity
                                                                                                                              a       values measured in UHV and in
                                                          considerably lower chain entanglement of the preorganized       ambient conditions are in a very good agree-
                                                          polymers along the surface normal. Hence, on surfaces, ment.     soft    A measurable electrical current is
                                                          and stimuli-responsive polymer brushes have been the system     detected after annealing at "800 K. Here, the
                                                          of choice for the development of adaptive layers as actuators
                                                                        [19–23]
                                                                                                                          sheet resistivity corresponds to "108 kV sq#1.
                                                          and sensors.                                                    Upon annealing to temperatures between 800
                                                              In this Full Paper, we report on the first freestanding
                Figure 1. Fabrication scheme and microscopy images of supported and suspended carbon and 1200 K, we find linear current/voltage
                                                          polymer brush, grafted from a crosslinked monolayer
                nanosheets.
                A.  Turchanin A) A "1etnmal.,
                                           thick SAM of biphenyl
                                               Advanced            molecules is
                                                               Materials          irradiated
                                                                                21,   1233   by(2009);
                                                                                                electrons. This results etcurves
                                                                                                           I. Amin                 (Fig. 6,
                                                                                                                           al., Small     2B,1623
                                                                                                                                              C, and   E). Increasing the
                                                                                                                                                   (2010).
                                                          (nanosheet)    that provides   mechanical   stability and structural
                in a mechanically stable crosslinked SAM (nanosheet) that can be removed from the substrate annealing temperature to "1200 K, drops the
                                                          integrity. Because of the morphological similarity, we refer to
                and transferred onto other solid surfaces. When transferred onto TEM grids, nanosheets suspend sheet resistivity to "100 kV sq#1, demonstrat-
                over holes. Upon heating to T > 1000 Kthis  in as a ‘‘polymer carpet.’’
                                                                vacuum    (pyrolysis), nanosheets transform into a
                                                                                                                          ing the clear metallic nature of the film. This
                graphitic phase. B) Optical microscopy image of the section of a "5 cm2 nanosheet that was
                transferred from a gold surface to an oxidized silicon wafer (300 nm SiO2). Some folds in the large resistivity is only one order of magnitude
                                                          2. Results
                sheet are visible, and originate from wrinkling          and
                                                                during the      Discussion
                                                                             transfer process. C) Optical microscopy higher than that of a Jdefect-free          graphene
                                                                                                                                                     ürgen Schnack,   CMD for CNM                4/36
                                                                                                                                      [4]
                image of a line pattern of 10 mm stripes of nanosheet. The pattern was fabricated by e-beam monolayer, and "100 times lower than the
                                                          For the
                lithography and then transferred onto oxidized      fabrication
                                                               silicon.         of the
                                                                        Note that   polymer   carpets,
                                                                                       small lines are aalmost
                                                                                                          !1-nm-thin
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?   6                                                                          Introduction

                              Problems for theory

                  • Systems contain very many carbon atoms.

                  • Structure very likely irregular. Defects?

                  • Quantum Methods, even DFT, cannot deal with
                    such systems. No way!

                                           . . . and there are more questions to come.

                                                                Jürgen Schnack, CMD for CNM    5/36
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?   6                                      Thank God, we have computers

                  Thank God, we have computers

                                   “Espresso-doped multi-core”

                                 128 cores, 384 GB RAM

                                     . . . but that’s not enough!
                                              Jürgen Schnack, CMD for CNM   6/36
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?   6                                                 Contents for you today

                  Contents for you today

                                                   √
                      1. Carbon nanomembranes

                      2. Classical molecular dynamics

                      3. Mechanical properties

                      4. Structure of CNMs

                      5. Open problems

                                                 Jürgen Schnack, CMD for CNM    7/36
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?   6                                        CMD

    Classical Molecular Dynamics

                        Jürgen Schnack, CMD for CNM   8/36
What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
à á á à p ?    6                                                                          CMD

                        Classical Molecular Dynamics

              • CMD can model very large systems
                (∼ 10.000.000 particles).

              • CMD can find ground states and model dynamics.

              • CMD can model thermal equilibrium and non-equilibrium.

              • But how should this be realistic for carbon-based com-
                pounds, where the chemical bond is of quantum nature?

                                                           Jürgen Schnack, CMD for CNM   9/36
à á á à p ?        6                                                                                 CMD

                                      sp hybridization modes

                                   sp, sp2, and sp3 hybridization modes.

wikipedia: orbital hybridization

                                                                      Jürgen Schnack, CMD for CNM   10/36
à á á à p ?       6                                                                                                  CMD

                          Very sophisticated carbon potential

                                    N
                                    X ~p2     i
H(~r1,~p1;~r2,~p2; . . . ) =                      + V (~r1,~r2, . . . )
                                    i=1
                                        2m
                                    N
                                    X                                     N
                                                                          X
         V (~r1,~r2, . . . ) =              U2(|~ri −~rj |, Zi) +               U3(|~ri −~rj |, |~ri −~rk |, Θijk , Zi)
                                     i6=j                            i6=(j
U2 (rij , 1.0)
                                                                                                                                                                            U2 (rij , 2.0)
                                                                                                                                                                            U2 (rij , 3.0)
                                                                                                                           -2.5                                             U2 (rij , 4.0)
à á á à p ?                                 6                                                                                                                               U2 (rij , 5.0)              CMD
                                                                                                                                                                            U2 (rij , 6.0)
                                                                                                                            -3
                                                                                                                                  1.1     1.2   1.3   1.4    1.5      1.6   1.7      1.8      1.9   2

                                                                     Coordination dependence                                                                   rij [Å]

                                                                                                       Abbildung 0.1: Die Funktionenschar U2 (r, Z) für unterschiedliche Koordinationen Z
                                                                                                             1

                                  0                                                                                        20
                                                                                                                           18
                             -0.5                                                                                          16
                                                                                                                           14
                              -1
         U2 (rij , Z) [eV]

                                                                                                                           12

                                                                                                            h(◊, Z) [eV]
                             -1.5                                                                                          10
                                                                                                                            8
                              -2                                           U2 (rij , 1.0)                                   6
                                                                           U2 (rij , 2.0)
                                                                           U2 (rij , 3.0)                                   4                                                     h(◊, 2.0)
                             -2.5                                          U2 (rij , 4.0)                                                                                         h(◊, 3.0)
                                                                           U2 (rij , 5.0)                                   2                                                     h(◊, 4.0)
                                                                           U2 (rij , 6.0)                                                                                         h(◊, 6.0)
                              -3                                                                                            0
                                      1.1    1.2   1.3   1.4   1.5   1.6   1.7      1.8      1.9   2                            0               90 120         180           250.5
                                                                 rij [Å]                                                                                       ◊   [¶ ]

    Abbildung 0.1: Die Funktionenschar U2 (r, Z) für unterschiedliche Koordinationen Z                                                  Abbildung 0.2: Die Funktionenschar h(◊, Z)
                                            Coordination influences strength and direction of bonding.
                             20
                             18
N. A. Marks, Phys. Rev. B 63, 035401 (2000).
             16
A. Mrugalla, Master thesis (2013)
                             14
                             12
         h(◊, Z) [eV]

                             10
                              8
                              6
                              4                                                  h(◊, 2.0)                                                                  Jürgen Schnack, CMD for CNM                12/36
                                                                                 h(◊, 3.0)
                              2                                                  h(◊, 4.0)
                                                                                 h(◊, 6.0)
à á á à p ?       6                                                                                               CMD

                          What can be achieved realistically?

                        • Structure calculations.

                        • Dynamical self-organization (1).

                        • Mechanical properties, such as vibrational
                          spectra and response to mechanical stress.

                        • Sorry, no electronic properties,
                          such as conductance or heat conductance.

(1) R. C. Powles, N. A. Marks, and D. W. M. Lau, Phys. Rev. B 79, 075430 (2009).

                                                                                   Jürgen Schnack, CMD for CNM   13/36
à á á à p ?      6                                                                                              Modulus

                     Mechanical properties
                         (Young’s modulus)

              F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Physica E 99, 215 (2018).

                                                                                 Jürgen Schnack, CMD for CNM     14/36
à á á à p ?   6                                                                    Modulus

                           Question

              What is the predictive power
              of classical carbon potentials
                 for structure and moduli
              for known carbon materials?

                       . . . before we start to investigate unknown materials!

                                                    Jürgen Schnack, CMD for CNM     15/36
à á á à p ?   6                                                                     Modulus

     Ground state distances for graphene, CNT, and diamond

Table 1: Ground-state dimensions in Å of graphene, CNT, and diamond for the
investigated potentials (LAMMPS).
(* No proper ground state structure found; † anisotropic.)
          potential             graphene              CNT      diamond
                            C-C distance     C-C distance lattice const.
          EDIP                       1.42             1.42         3.56
          REBO-II                    1.42             1.42         3.58
          ABOP                       1.42 1.424, 1.417 †           3.46
          Tersoff 89                 1.46             1.46         3.57
          Tersoff 90                    *                  *       3.56
          Tersoff 94                 1.55                  *       3.56
          Tersoff BNC                1.44             1.44             -
          Tersoff EA                 1.48             1.48         3.57
          AIREBO+LJ+t                1.40             1.41         3.58
          AIREBO+LJ                  1.40             1.40         3.58
          AIREBO+t                   1.40             1.40         3.58
          AIREBO                     1.40             1.40         3.58
          experimental               1.42             1.42        3.567

                                                     Jürgen Schnack, CMD for CNM     16/36
à á á à p ?             6                                                                                                            Modulus

                                     Young’s modulus for graphene

                    1500
                    1400                                                    1400
                    1300
                                         Tersoff 1989                       1200                      Tersoff   1989
                    1200                 REBO-II                                                      Tersoff   1990
              E / GPa

                                                                      E / GPa
                                         EDIP                               1000                      Tersoff   1994
                    1100                 ABOP                                                      Tersoff EA   2005
                    1000                 AIREBO+LJ+t                            800              Tersoff BNC    2012
                                         AIREBO+LJ
                        900              AIREBO+t
                                         AIREBO                                 600
                        800
                        700                                                     400
                              0   0.01    0.02          0.03   0.04                   0   0.01      0.02           0.03   0.04
                                         1/N                                                        1/N

Young’s modulus of graphene for various sizes and potentials. N denotes the num-
ber of atoms in the approximately square graphene sheets. Open boundary condi-
tions are applied.
Experimental value: 1000 GPa.

                                                                                                      Jürgen Schnack, CMD for CNM     17/36
à á á à p ?             6                                                                                                            Modulus

                                              Young’s modulus for CNT

                    1300                                                       1300
                    1200                                                       1200
                                                                               1100
                    1100
                                                                               1000
                    1000                                                                                       Tersoff   1989
                                                                                900
              E / GPa

                                                                         E / GPa
                                          Tersoff 1989                                                         Tersoff   1990
                        900               REBO-II                               800                            Tersoff   1994
                                          EDIP                                                              Tersoff EA   2005
                        800               ABOP                                  700
                                                                                                          Tersoff BNC    2012
                                          AIREBO+LJ+t                           600
                        700               AIREBO+LJ
                                                                                500
                                          AIREBO+t
                        600               AIREBO                                400
                        500                                                     300
                              0   0.002     0.004        0.006   0.008                0   0.002   0.004     0.006         0.008
                                              1/N                                                   1/N

Young’s modulus of a (20,20) CNT with armchair geometry along the tube, taken as
x-direction, for various sizes and potentials. N denotes the number of atoms of the
tube. Open boundary conditions are applied.
Experimental value: 1000 GPa.

                                                                                                      Jürgen Schnack, CMD for CNM     18/36
à á á à p ?   6                                                                          Modulus

                      Young’s modulus for diamond

                                                           GPa
                                                                 1130

                                                                 1110

                                                                 1090

                                                                 1070

                                                                 1050
                                      z
                                          y
                                      x

Structure and directions as well as Young’s modulus of diamond taken in various
directions on the northern hemisphere around the positive x-direction for N = 8631
and the EDIP potential. Open boundary conditions are applied.
Experimental values: 1.05 TPa . . . 1.21 TPa

                                                          Jürgen Schnack, CMD for CNM     19/36
à á á à p ?      6                                                                                              Modulus

                                               Conclusion

        For the investigated observables
        (bond length & Young’s modulus)
        and the chosen carbon materials
               EDIP and REBO-II
              perform overall well.
              F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Physica E 99, 215 (2018).

                                                                                 Jürgen Schnack, CMD for CNM     20/36
à á á à p ?   6                                                          Structure

                        How to find the

                  Structure of CNMs?

                                          Jürgen Schnack, CMD for CNM      21/36
à á á à p ?   6                                                                               Structure

                                     Questions

                  • The structure or a structure?

                  • Structure very likely a metastable state, a local
                    energy minimum. Glas-like?

                  • How to model? Initial conditions, cooling, . . . ?

                  • Which structures are correct? Observables?

                  • X-ray structure determination impossible!

                                                               Jürgen Schnack, CMD for CNM      22/36
à á á à p ?   6                                                                               Structure

                               That’s how we do it

                                                           z        −Fz
                           z

                                                  random

                   Vwall

Model: includes only carbon atoms (+ surface);
Initial state: randomized carbon positions in SAM, vertical force field;
Cooling: Nose-Hoover or alike;
LAMMPS: EDIP and analytical forces included in our version.

                                                               Jürgen Schnack, CMD for CNM      23/36
Tabelle 7.2 und sind, verglichen mit den experimentellen Werten (≥10 GPa, siehe Ab-
à á á à p ?    schnitt
                  6    6.7), deutlich zu groß. Offensichtlich machen die Sechsecke die linke Struktur                   Structure

               in Abbildung 17 stabiler als die rechte. Außerdem wird durch den geringeren Impuls
                                          Examples of CMNs
               die Struktur weniger durchmischt und erhält einen weniger isotropen E-Modul.

                                                               eV                           eV
                    Abbildung 17: TPT, T = 700 K; k = 30        Å
                                                                    (links) und k = 200     Å
                                                                                                 (rechts)

F. Gayk, Master Thesis, Bielefeld University (2018)

J. Ehrens et al., arXiv:2011.00880
                     Tabelle 7.2: E-Module (bezüglich: Boxvolumen|Oberflächennetzvolumen)
                                                                Ex / GPa Ey / GPa
                               TPT   (T=700 K, k = 30 eV
                                                      Å
                                                         )          436|   847   334|   649
                                                       eV
                               TPT   (T=700 K, k = 200 Å )          215|   448   220|   457
                               TPT   (T=300 K, k = 60 eV
                                                      Å
                                                         )          325|   987   316|   960
                                                                                         Jürgen Schnack, CMD for CNM      24/36
                               TPT   (T=1100 K, k = 60 eV
                                                        Å
                                                           )        351|   866   339|   838
Die zugehörigen E-Module betragen links Ex = 231|730 GPa bzw. Ey = 230|725 GPa
à á á à p ?    und6 rechts Ex = 487|916 GPa bzw. Ey = 455|856 GPa. Obwohl die rechte Struk-                           Structure

               tur größere Löcher hat, ist sie wegen ihrer geringeren Dicke stabiler. Offensichtlich
               führen auch große LöcherExamples            of CMNs
                                          zu keinem E-Modul,    welches in die Größenordnung der
               experimentellen Werte von ≥10 GPa kommt.

                                       eV                         Å
               Abbildung 21: k = 60    Å
                                          ,   T = 300 K, v = 35   ps
                                                                     ;   BPT, N = 4900 (links) und NPTH,
               N = 2500 (rechts)

F. Gayk, Master Thesis, Bielefeld University (2018)                                                      Å
                  In Abbildung 21 sind die zu BPT und NPTH gehörenden Resultate für v = 35               ps
J. Ehrens et al., arXiv:2011.00880

               38

                                                                                       Jürgen Schnack, CMD for CNM      25/36
à á á à p ?      6                                                                                             Structure

                                        Examples   of CMNs
                                            7.4. DFT Struktur als Ausgangszustand

                                                           eV
              Abbildung 26: DFT Struktur (links); k = 60    Å
                                                              ,   T = 300 K auf DFT Struktur (rechts)

Randomized and cooled DFT structure (1).
               7.4.2. Atome
(1) P. Cabrera-Sanfelix,        entfernen
                         A. Arnau, and D. Sanchez-Portal, Phys. Chem. Chem. Phys. 12, 1578 (2010).
(2) F. Gayk, Master Thesis, Bielefeld University (2018)

              Da allerdings auch dieser E-Modul zu groß ist, wird versucht durch zufälliges Löschen
              einiger Atome die Dichte zu verringern. Es werden Anteile von p = 5 %, p = 10 %
              und p = 20 % gewählt. Die Resultate für p = 5 % und p = 20 % befinden sich in
              Abbildung 27. Qualitativ sind keine großen Unterschiede zu erkennen.
                                                                                Jürgen Schnack, CMD for CNM      26/36
à á á à p ?   6                                                                          Structure

                             Examples of CMNs

CNM have got holes (pores)! In simulations this depends on initial conditions: more
violence ⇒ more holes.

                                                          Jürgen Schnack, CMD for CNM      27/36
in Abbildung 17 stabiler als die rechte. Außerdem wird durch den geringeren Impuls
                                                                                  6.7.        Beulentest mit dem Rasterkraftmikroskop
die Struktur weniger durchmischt und erhält einen weniger isotropen E-Modul.
                                                                                        Beim Beulentest wird die CNM über dem Loch eines Trägers fixiert und ein Druck-
     à á á à p ?                   6                                                    unterschied zwischen beiden Seiten erzeugt (siehe Abbildung 13). Die Größe der ent-
                                                                                                                                                                              Structure
                                                                                        stehenden Beule wird mit einem Rasterkraftmikroskop vermessen und erlaubt eine
                                                                                        Berechnung des E-Moduls. Weitere Informationen zum Verfahren befinden sich in
                                                                Young’s modulus of CMNs Referenz [44]. In Abbildung 14 sind die E-Module und weitere Eigenschaften für die
                                                                                        drei verwendeten SAMs aufgelistet.

                                             eV                         eV
    Abbildung 17: TPT, T = 700 K; k = 30      Å
                                                  (links) und k = 200   Å
                                                                             (rechts)

                                                                                                            Abbildung 13: Aufbau des Beulentests [44]
     Tabelle 7.2: E-Module (bezüglich: Boxvolumen|Oberflächennetzvolumen)
                                              Ex / GPa Ey / GPa
              TPT (T=700 K, k = 30 eV
                                    Å
                                      )           436| 847   334| 649
              TPT (T=700 K, k = 200 eV
                                     Å
                                        )         215| 448   220| 457
              TPT (T=300 K, k = 60 eV
                                    Å
                                      )           325| 987   316| 960
              TPT (T=1100 K, k = 60 eV
                                     Å
                                        )         351| 866   339| 838
              BPT (T=700 K, k = 60 eV
                                    Å
                                      )           202| 736   191| 695
              NPTH (T=700 K, k = 60 eVÅ
                                         )        536|1367   500|1277

                                                                                                           Abbildung 14: E-Module aus Beulentest [44]

  In Abbildung 18 sind die Resultate für die gleiche SAM für zwei unterschiedli-
che Fluktuationsstärken dargestellt. Hier gibt es auf den ersten Blick keine großen
Unterschiede in der Art der Vernetzung. Durch die größere kinetische Energie bei
identischer Simulationsdauer ist die rechte Struktur etwas höher gewandert. Das grö-
     Theoretical Young’s moduli closer to graphene;
ßere Volumen ist vermutlich auch der Grund dafür, dass die mit Oberflächennetz
     factor 10 . . . 50 bigger than experiment.
berechneten E-Module in der rechten Struktur etwas kleiner sind (siehe Tabelle 7.2).

     F. Gayk, Master Thesis, Bielefeld University (2018)
                                                    35
     X. Zhang, C. Neumann, P. Angelova, A. Beyer, and A. Gölzhäuser, Langmuir 30, 8221 (2014).

                                                                                                                                             Jürgen Schnack, CMD for CNM        28/36
                                                                                                                                                                        29
à á á à p ?      6                                                                                             Structure

                                       Alternative structure

Possible configuration of a Biphenyl layer, ARGUS Lab (1).
Not realistic, since construction principle works only for BPT.
NEXAFS shows about 60 % aromaticity, i.e. 40 % of phenyl rings are broken.

(1) D. Rhinow, N.-E. Weber, A. Turchanin, J. Phys. Chem. C 116, 12295 (2012).

                                                                                Jürgen Schnack, CMD for CNM      29/36
à á á à p ?   6                                              ODT

              CNMs from spaghetti?

                              Jürgen Schnack, CMD for CNM   30/36
previously mentioned appplications comprise SAMs on solid supports.. However, aromatic
à á á à p ?      6                                                                                                                            ODT
                SAMs can even be laterally
                                        ly cross-linked and transferred as monomolecular
                                                                                      ar thin membranes on
                micrometer-sized holes (see
                                                          Octadecanethiol
                                       (s below), which provides an innovative techn
                                           [1],[2]],[9]
                                                                                   nology in the field of
                membrane separation                   .

                Figure 2.1: (a) Schematic diaggram depicting a self-assembled monolayer (SAM) of alk         lkanethiolates on a metal
                substrate. (b) Scheme of a decan
                                               anethiol molecule adsorbed on a solid surface. The orientat   ation of the molecule with
                respect to the substrate surface is defined by the tilt angle α, the twist angle β, and the pre
                                                                                                             recession angle χ. Part a is
                reprinted with permission from  m ref 16. Copyright (2005) American Chemical Society.. Part b is reprinted with
                permission from ref [20]. Copyri
                                               right (2010) Royal Society of Chemistry (Great Britain).

Patrick Stohmann, Dissertation, Bielefeld, 2020.

                                                                                                                                       9

                                                                                                               Jürgen Schnack, CMD for CNM   31/36
à á á à p ?       6                                                                                                 ODT

                      Octadecanethiol (ODT, C18) – initial SAM

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105, 1103 (2005).

                                                                                     Jürgen Schnack, CMD for CNM   32/36
à á á à p ?      6                                                                    ODT

              Octa-decane-thiol (ODT, C18) – first simulations

Structure is mechanically stable
Phenyls do not form
Theoretical Young’s modulus much smaller than for BPT, TPT or NPT
J. Ehrens, private communication

                                                       Jürgen Schnack, CMD for CNM   33/36
à á á à p ?   6                                                                 Open questions

                               Open questions

     • Structure correct? Discrepancy w.r.t. Young’s modulus!

     • Compare to ion deflection studies (Richard Arthur Wilhelm (Wien))!

     • How thick is a CNM?

     • Precursor-CNM correlations? Which, if any?

     • No thiols in decane-based CNMs?

     • Systematic investigation of holes needed.

     • Future: water permeation.

                                                          Jürgen Schnack, CMD for CNM   34/36
à á á à p ?   6                                                             Summary

                     Summary

                  • Classical Molecular Dynamics can be set up for
                    carbon systems using effective many-body car-
                    bon potentials.

                  • Ground-state geometries can be determined with
                    great accuracy (exception graphite).

                  • Dynamical self-assembly can be simulated.

                  • Prospect to simulate nano sheets with realistic,
                    i.e. probably irregular structure.

                  • Electronic properties CANNOT be modeled.

                                             Jürgen Schnack, CMD for CNM     35/36
à á á à p ?   6                                         The end

     Thank you very much for your
              attention.

                         Jürgen Schnack, CMD for CNM     36/36
You can also read