Design of glass capsules for CO2 submarine storage - Desarc ...

Page created by Lonnie Murphy
 
CONTINUE READING
Design of glass capsules for CO2 submarine storage - Desarc ...
DESARC - MARESANUS
DEcreasing Seawater Acidification Removing Carbon

 Design of glass capsules for CO2 submarine storage

 M. Cremonesi, C. Fu, N. Cefis, M. Colombo, A. Corigliano, U. Perego

            Dipartimento di Ingegneria Civile e Ambientale
                        Politecnico di Milano
                  massimiliano.cremonesi@polimi.it
Design of glass capsules for CO2 submarine storage - Desarc ...
The Submarine Carbon Storage (SCS)

                                                                                             The SCS method consists in five
                                                                                             phases:
                                                                                             1.    The emitter setup the CO2 capture
                                                                                                   system.
                                                                                             2.    Production of glass capsules.
                                                                                             3.    CO2 collected from emitter and from
                                                                                                   capsules production.
                                                                                             4.    Capsules filling and launching.
                                                                                             5.    Filled capsules are transported and
                                                                                                   released.

Picture from “Evaluation of a new technology for carbon dioxide submarine storage in glass capsules”- Caserini et. al. (2017).

          La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
The Capsule

     From a structural point of view, fundamental questions

                                                                          •     Shape

                                                                          •     Dimensions (height, length and thickness)

                                                                          •     Materials (Glass?)

Picture from “Evaluation of a new technology for carbon dioxide submarine storage in glass capsules”- Caserini et. al. (2017).

          La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
The filling and launching process

 In the filling and launching process what era the most critical aspects from a structural point of
 view (e.g. for the safety of the capsules)?

 Capsules are very thin containers subjected to very high internal and external pressure
            •   filling phase: difference between internal and external pressure can be very large

            •   after the deposition on the seabed: maximum external pressure

                                       Static analysis

 In the falling phase, the capsules can impact with the seabed (sand, rocks,…)
 or with other capsules leading to possible breakage.

                                       Dynamic analysis

     La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
The Material

BOROSILICATE GLASS for its chemical resistance in salty environment.

                                                             Material properties
                                                             Density                 ρ = 2.20 kg/m3
                                                             Elastic modulus         E = 64000 MPa
                                                             Poisson’s ratio         ν = 0.2

Design tensile stress (the Galileo method) (CNR-DT 210/2013)

                                                                      Practically no tensile strength

 Emphirical compressive design stress
                                                                      Vey high compressive strength

       La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
Thin capsule container
 Structural analysis

  Capsule with uniform thickness

  Mariotte formula to estimate the thickness              =           = 3.41          = 3.5
                                                              2   ;

                                                      Analytical model: Thin shell     FEM model: 58696 4-node
                                                    structure solved with the force      bilinear axisymmetric
                                                                method                quadrilateral elements (CAX4)

                                                                                               23 elements
                                                                                                along the
                                                                                                thickness
• Pext = 20 MPa: external water pressure at
                   2000m below the sea level;
                                                                                               U2=U3=UR1=0
• Pint = 10 MPa: internal liquefied CO2 pressure;
• Pnet=Pext - Pint

        La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
Thin capsule container
stress comparison

    La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
Thin capsule container
Principal stresses

                                         Lower stresses of about 50%                  Smaller thickness can
                                         in the spherical region                      be adopted

                              s

                                              Safety check

                              x                          _       ,    = 0.86      ≤       ;   = 2.03
                                               |     _       ,       | = 438.78       ≤       ;   = 440

                                                                         OK!

     La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
Thin capsule container
 Variable thickness capsule model

Capsule with variable thickness
  55854 4-node bilinear axisymmetric
    quadrilateral elements (CAX4)

          t =2 mm

             Smoothing
          radius = 120 mm

                                                    Entirely compressed capsule
           U2=U3=UR1=0            t =3.5 mm               _    ,   | = 437.90       ≤    ;   = 440
                                                     More effective than the constant thickness capsule
                                                     using less material!

         La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of glass capsules for CO2 submarine storage - Desarc ...
Thin spherical container
Comparison of containers storage capacity

                                 Best value of L?

   Thin spherical container has higher storage capacity than the capsule of
   variable thickness.

   In the following only spherical capsules will be considered.

      La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Filling phase

                                       CO2 10 MPa

     H2O 10 MPa

    La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Effect of the plug
Stresses in the filling phase

                                                    Plug made of borosilicate glass

                                                              Rubber obstructer        Ceramic material

                                                        Change of the geometry: disturbances
                                                        to the membrane response with
                                                        additional stresses which vanish after the
                                                        wavelength.

                                                        Thickness enlargement is required in the
                                                        region close to the plug to increase the
The internal CO2 pressure is equilibrated by the        bearing capacity.
artificially-imposed external water pressure

       La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Effect of the plug
Stresses in the filling phase

                                                   _       ,    = 57.68     ≥   ;       = 2.03
                                            |     _    ,       | = 460.20   ≥       ;    = 440

                                                The safety checks are not fulfilled: high
                                                stresses are generated on the internal upper edge
                                                making the preliminary shape unacceptable.

                                                Topological optimization: minimum strain energy
                                                is imposed in the upper region by reducing the
                                                whole model volume to 85%.

      La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Optimized shape
    FEM stress analyses

         _       ,     = 0.16        ≤     ;       = 2.03
|    _       ,       | = 434.70        ≤       ;    = 440
                 The safety check is fulfilled

                 La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
3D modeling
Shell elements

 For a 3D modelling, it is not convenient to model the container as continuum solid body due to the small
 thickness, which would require high number of finite elements, hence high computational cost.

 3D shell elements are adopted: midsurface is the shell reference surface on which engineering quantities
 are computed.

 The midsurface is defined as the revolution
 of shell midline. Three regions are defined
 based on the thickness:
 1.   10 mm thickened flat region;
 2.   Variably thickened region;
 3.   2 mm thickened spherical
      region with R149 mm.

       La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Capsule at seabed (2000m)

Pressure at the storage site: 2000 m below the sea level            Pext = 20 MPa External water pressure
                                                                    Pint = 10 MPa Internal CO2 pressure

 Minimum principal stresses

External surface SPOS

                                                                             Internal surface SNEG

                                                      |        _,   | = 403.16      ≤    ;   = 440

        La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase

Hydrostatic analysis

                                               =              = 143.49                        Buoyancy force

                                        =                 +              = 136.95             Gravity force

                                              >           Additional mass is required to
                                                          ensure the container falling.

             2200 kg/m3                            Sand: low cost and large availability material
              930 kg/m3
              1035 Kg/m3                    Minimum mass of stored material for which          balances       :
              2200 kg/m3
            6.43 10
                                                      =            −                = 13.21
            1.35 10
            1.41 10
            1.35 10

       La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase
impact analyses

Impact stresses analyses: evaluation of principal
stresses caused by the impact of the container with
seabed at 2000 m below the sea level.
                                                                                           Pext
Impact cases:
•   impact with rock soil;
•   impact with sand soil;
                                                                                   Pint
•   impact against another capsule;
•   impact against four stored capsules.

 The pressurized container drops with the terminal
 velocity.

          2       −
      =                           = 121.44     /

       La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase
impact with seabed: rigid flat soil

                                                          First contact point: Minimum principal stresses

                                                             Peak value  390 Mpa < 440 Mpa

                                                             The safety check is fulfilled

      La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase
impact with seabed: deformable flat soil

Elasto- plastic sand soil with the Dracker-Prager failure criteria
                                                                 slave surface             master surface

                                                           clamped surface

                                                            First contact point: Minimum principal stresses

        La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase
 impact against a capsule

Impact of a capsule on a stored capsule on rigid seabed

                                              First contact point: Minimum principal stresses

                                                     Peak value  380 Mpa < 440 Mpa

                                                     The safety check is fulfilled

       La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase
impact against a four stored capsule

                                                            terminal
                                                            velocity

                                                          First contact point: minimum principal stresses

     La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of SCS Glass container
Conclusion

   1. Borosilicate glass is used for its high compressive strength and chemical
      resistance in salty environment.

   2. Thin spherical container is more appropriate than the capsule container in
      terms of the storage capacity.

   3. The final shape is obtained through a topological optimization.

   4. Different loading cases during the filling phase has been analysed.

   5. In the falling phase, additional sand is required to guarantee the capsule
      falling.

   6. At the storage depth, the capsule is totally compressed.

   7. Impact analysis with different soils have been studied.

     La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
What next?

  •    Detailed studied of the material properties of borosilicate glass.

  •    Experimental tests on the borosilicate glass.

  •    Possible improvements of the capsule design (surface treatments).

  •    Simulation of the complete falling phase in a fluid-structure interaction
       framework.

      La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
DESARC - MARESANUS
DEcreasing Seawater Acidification Removing Carbon

 Design of glass capsules for CO2 submarine storage

 A. Corigliano, U. Perego, M. Cremonesi, N. Cefis, M. Colombo, C. Fu

            Dipartimento di Ingegneria Civile e Ambientale
                        Politecnico di Milano
                  massimiliano.cremonesi@polimi.it
Optimized shape
 Material usage comparison

After the optimization process, a stiffer and                Model               Volume [m3]   Material surplus [%]

less material demanding shape is obtained.         Perfect spherical container   5.58 10                -
Slightly volume increment is observed in          Preliminary shaped container   7.84 10            +40.54
the optimized container when compared to              Optimized container        6.43 10            +15.30
the perfect spherical container.
                                                Even with the introduction of the plug and the thickness
                                                enlargement, the spherical container remains the most
                                                appropriate shape from the material consumption’s point of view.

      Values in mm

         La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Optimized shape
 FEM stress analyses

  Overpressures cases: to consider                 1. |    _       ,       | = 130. 20   ≤   ;   = 440
  a reduced balancing effect, two
  overpressure cases are analyzed:
  1.   ΔP = 3 MPa
        Pext = 10 MPa
        Pint = 7 MPa
  2.   ΔP = 1 MPa
        Pext = 10 MPa
        Pint = 9 MPa

                                                   2. |        _       ,    | = 49. 80   ≤   ;   = 440

A. Corigliano, U. Perego, M. Cremonesi, N. Cefis, M. Colombo, C. Fu
Dipartimento di Ingegneria Civile e Ambientale
Falling phase
Terminal velocity

Hydrodynamic analysis
                                       =                                                                   Minimum
                                        =                                     −
                                                                        =                    = 1.15        sand mass to
                                     =       +                               1−                            be added
                                      =       +

                                                                                                       = 1.20 kg
                                                                                                      = 12.04 kg
                                            The terminal velocity can be evaluate
                                                by imposing zero resultants:                           = 1.42 kg

                                                   Dynamic equilibrium                                = 14.66

  1                                                        +       =
=                      Drag force                              1
  2                                                       +                         =
                                                               2
= 0.47            Drag coefficient
                                                          2        −
                                                     =                                  = 121.44      /
= 0.07         Cross section area

         La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Dynamic analysis
 3D impact with seabed: rigid wavily shaped soil

Rocky soil: it is modelled as rigid element for its low deformability.
                                                                                                                slave surface

                                                                         master surface                          clamped soil

                                                                         First contact point: Minimum principal stresses
Dynamic analysis
 3D impact with seabed: rigid wavily shaped soil

Overturned container impact

                                                   No significant principal stresses
                                                   variation are observed in the impact
Dynamic analysis
 3D impact with seabed: deformable shaped soil

Elasto- plastic sandy soil with the Dracker-Prager failure criteria      slave surface                 master surface

                                                                      First contact point: Minimum principal stresses
Dynamic analysis
 3D impact with seabed: deformable flat soil

Elasto- plastic sandy soil with the Dracker-Prager failure criteria     Parameter          Symbol      Value and unit
                                                                      Density                           1900 kg/m3
                           = − tan   −    =0                          Elastic modulus                    50
                                                                      Poisson ratio                         0.3
                                                                      Soil strength          Ss          0.3

                                                                                 angle of friction in the Drucker-
                                                                                 Prager model;
                                                                                 material cohesion.

             tan       =                  =56.41°    per    = 37°
                                                                             = angle of friction in the
                                                                            Mohr-Coulomb plane
                   =                       =0         per    =0
Dynamic analysis
 3D impact analysis

                   Maximum values of minimum principal stresses in the studied impact cases

                                Impact case            σmin_prin SNEG [MPa]   σmin_prin SPOS [MPa]

                                Rigid flat soil              -360.17                -390.39
                               Rigid wavily
                                                             -357.63                -394.08
                                shaped soil
                              Deformable flat
                                                             -368.64                -379.64
                                     soil
                               Deformable
                                                             -367.10                -381.38
                             wavily shaped soil
                               Container on
                                                             -366.07                -381.45
                                 container
                             Container on four
                                                             -365.73                -383.2
                                containers

         The impact with rigid wavily shaped soil represents the most severe case. Nevertheless, the
         safety check is satisfied since:
                                     |            _,       | = 394.08          ≤    ;   = 440
         In the impact with rigid soil, damped vibration response can be observed: the stresses
         vanish rapidly and the initial stress state is recovered.

A. Corigliano, U. Perego, M. Cremonesi, N. Cefis, M. Colombo, C. Fu
Dipartimento di Ingegneria Civile e Ambientale
You can also read