Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de

Page created by Martin Gonzalez
 
CONTINUE READING
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Modern Methods Experimental
         Physics

     Lecture 14 – 19‐2‐2021

          Marc Vrakking
       marc.vrakking@mbi‐berlin.de
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Tentative schedule and topics
Lecture
Fr : 10:00 – 11:45
https://fu‐berlin.webex.com/meet/vrakking

Working group
Fr : 8.00 – 9.45 (every other week, first time 20‐11‐2020)
https://fu‐berlin.webex.com/meet/vrakking
• Active participation in the working group requires a laptop
• Slides will be posted following each lecture, incl. suggestions
  for further reading:
       http://staff.mbi‐berlin.de/vrakking/lecture/index.html
• The exam will consist of a 15‐page paper on a selected topic
• Last lecture: 28‐2‐2021; paper due 1‐5‐2021
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Schedule of Lecture Wintersemester 2020‐2021 (tentative)
November 6, 2020                 Lecture 1          Introduction
November 13, 2020                Lecture 2          Pump‐probe spectroscopy
November 20, 2020                Lecture 3+WG1      Pump‐probe spectroscopy (cont.)
November 27, 2020                Lecture 4          Lasers – I
December 4, 2020                 Lecture 5+WG2      Lasers – II
December 11, 2020                Lecture 6          Lasers – III
December 18, 2020                Lecture 7+WG3      Atoms in strong laser fields – I
Januari 8, 2021                  Lecture 8          Atoms in strong laser fields – II
Januari 15, 2021                 Lecture 9          Molecules in strong laser fields
Januari 22, 2021                 Lecture 10+WG4     HHG – I
Januari 29, 2021                 Lecture 11         HHG ‐ II
Februari 5, 2021                 Lecture 12+WG5     Attosecond pulse generation WG5
Februari 12, 2021                Lecture 13         Attosecond pump‐probe spectroscopy ‐ I
Februari 19, 2021                Lecture 14+WG6     Attosecond pump‐probe spectroscopy ‐ II
Februari 26, 2021                Lecture 15         Attosecond pump‐probe spectroscopy ‐ III

Working groups (tentative):

WG 1 ‐ vibrational wavepackets            WG 4 ‐ dressed states
WG 2 – velocity map imaging               WG 5 – SFA
WG 3 ‐ lasers                             WG 6 – t.b.d.
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Topics for 15‐page end‐of‐term paper
 Wavelength dependence of strong‐field ionization – how it functions and how
  we can exploit it in laser‐induced electron diffraction
 Wavelength dependence of electron localization in H2 – numerical project
  using software discussed in working group
 Attosecond ionization time delays – a critical survey of the recent literature
 Attosecond transient absorption spectroscopy – accomplishments and
  prospects
 Attosecond molecular electron dynamics – a survey of theoretical predictions
 Attosecond spectroscopy without attosecond pulses – a survey of HHG
  imaging, inelastic X‐ray scattering and core‐hole clock methods

 Other topics possible with permission
                                                                                   4
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Application of attosecond pulses
            in atoms

                                   5
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Attosecond
   atomic
   physics                     Examples:
Single electron removal
                               Direct Measurement of Light Waves,
 continuum electron           Goulielmakis et al., Science 305,
  dynamics following XUV       1267 (2004)
  photoionization              Attosecond electron wave packet
  (streaking)                  interferometry, Remetter et al.,
                               Nature Physics 2, 323 (2006)
 time delays between
  photoionization from         Delay in photoemission, Schultze et
  different initial orbitals   al, Science 328, 1658 (2010), Klunder
                               et al, Phys. Rev. Lett. 106, 143002
 coherent electron (hole)     (2012)
  motion following
                               Real‐time observation of valence
  excitation of multiple
                               electron motion, Goulielmakis et al.,
  orbitals or ionization       Nature 466, 739 (2010), Mauritsson et
  from multiple orbitals       al, Phys. Rev. Lett. 105, 053001 (2010)
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Direct Measurement of Light Waves
   Experimental proof that isolated attosecond pulses
   (cut‐off harmonics) are obtained for CEP=0

                                                        E(t) reconstructed
                                                        (red line) from the
                                                        streaking measurement
                                                        and calculated (gray
                                                        line) from the measured
                                                        pulse spectrum

Goulielmakis et al., Science 305, 1267 (2004)
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Delay in photoemission
                                                      A = group delay of the attosecond pulses
                                                      I = atomic delay two‐color ionization

                                               Important:
                                               Measured time delays /phases accumulate
                                               both during ionization process and during
                                               propagation in the Coulomb+laser fields

Kluender et al, Phys. Rev. Lett. 106, 143002 (2012)
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Real‐time
                                                 observation of
                                                valence electron
                                                    motion
                                                Ionization produces the ion in a
                                                superposition of two states that
                                                are probed by the XUV

                                               Can observe stepsize formation
                                                of different ionic states

                                               Can observe coherence
Goulielmakis et al., Nature 466, 739 (2010)     between different ionic states
Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
Observation of electronic coherence

                  Goulielmakis et al., Nature 466, 739 (2010)
Holographic observation of electronic
             coherence
          Reference WP

                                                       ( Eref  E A ) //ℏ
                                                                           
                                       IR
    0

                  Unknown WP

    XUV

   -IP                                                 Time
                                   

                               Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
Near‐threshold Electron Wavepackets
HHG in Xenon, polarization gated
100 nm Al filter                                      VMIS image
                         Helium
                                                 py

                          ionization

                                                                    px
                          IP

                         excitation                 Helium ionization
                                                      (raw image)

                           Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
Near‐threshold Electron Wavepackets
   HHG in Xenon, Helium two-color ionization, I ~1013 W/cm2

                           Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
First-ever observation of
bound electron dynamics
using attosecond lasers!!!

                                      In (E,E) plot the beats of individual
                                      states against the continuum and
                                      beats among the states can be
                                      observed  access to energy,
                                      amplitude and phase!!!
                             Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
Attosecond
   atomic
   physics
Multi‐electron dynamics
 Auger decay

Example:

Time‐resolved atomic inner shell
spectroscopy, Drescher et al.,
Nature 419, 803 (2002)

                                   15
Attosecond measurement of Auger
             decay
               Photoionization of Kr at 95 eV leads to both
               the removal of valence electrons and that of
               3d core M‐shell electrons (purple)

               The removal of a core electron may be
               followed by an MNN Auger decay (green),
               allowing a measurement of the liftetime of the
               core hole
                                    M core level hole,
                                    N relaxing electron state
                                    N emitted electron state

                    M. Drescher et al., Nature 419, 803 (2002)
Attosecond measurement of Auger
               decay
streaking regime
Auger >laser

                   M. Drescher et al., Nature 419, 803 (2002)
Attosecond measurement of Auger
             decay
                                            The Auger lifetime can be revealed by
                                            a streaking /sideband measurement

                              valence ionization

  broadening due to streaking
     (no CEP stabilization)                                     Auger sideband
                photoelectrons from Auger proces
                                      M. Drescher et al., Nature 419, 803 (2002)
Attosecond measurement of Auger
             decay

                                   Determination of Auger
                                   lifetime of 7.9  1 fs

                M. Drescher et al., Nature 419, 803 (2002)
Attosecond
   atomic
   physics
Multi‐electron dynamics
 Auger decay
 Shake‐up

Example:

Time‐resolved atomic inner shell
spectroscopy, Drescher et al.,
Nature 419, 803 (2002)

Attosecond real‐time
observation of electron
tunneling in atoms, Uiberacker et
                                    20
al., Nature 446, 627 (2007)
Time‐resolving the tunneling process
                                            Photoionization of Ne at 90 eV leads to both
                                            the removal of a 2p valence electron and
                                            shake‐up of a second 2p electron into a
                                            Rydberg state

                                            The shake‐up electron can be ionized by a low‐
                                            order NIR multi‐photon ionization process

Uiberacker et al., Nature 446, 627 (2007)
Uiberacker et al., Nature 446, 627 (2007)

                                     22
Uiberacker et al., Nature 446, 627 (2007)

See sub‐cycle time‐dependence
of ionization, even for low‐
order processes where >>1

                                                                     23
Attosecond atomic physics

Increasingly complex atomic physics problems addressed by attosecond
pump‐probe spectroscopy
Fano Resonances in Transient Absorption

                           C. Ott et al., arXiv:1205.0519
Fano Resonances in Transient Absorption

                           C. Ott et al., arXiv:1205.0519
Fano Resonances in Transient Absorption:
Frequency analysis similar to previous holography
                   experiment

                                  C. Ott et al., arXiv:1205.0519
Useful materials for further reading (strong field
ionization):
C.J. Joachain, N.J. Kylstra and R.M. Potvliege, Atoms in Intense Laser
Fields, (Cambridge University Press, 2012)

M. Ivanov et al., Anatomy of strong field ionization, J. Mod. Optics
52, 165 (2005)

L. DiMauro and P. Agostini, Adv. At. Mol. And Opt. Physics 35, 79
(1995)

+ several chapters (DiMauro, Ivanov, Smirnova, L´Huillier) in
upcoming book „Attosecond and XUV Physics“ (ed. by M.J.J. Vrakking
and Th. Schultz, Wiley, december 2013)
                                                                       28
You can also read